Kafka安装部署(Linux环境)

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/qq_29116427/article/details/79949402

环境准备

  • JDK:建议版本在 1.7 及以上,否则可能会报如下错误:java.lang.UnsupportedClassVersionError
    (安装步骤略)

  • ZooKeeper:Kafka 的安装包中自带 zookeeper,但并不建议使用之,最好另外自行部署一个 zookeeper 环境。
    (安装步骤略)

下载Kafka

下载地址:http://kafka.apache.org/downloads
本文下载的是当前最新的稳定版:kafka_2.11-1.0.0.tgz

部署Kafka(单节点)

修改配置

  • 解压安装包到指定目录下
tar -zxvf kafka_2.11-1.0.0.tgz -C /home/kafka/
  • 修改配置信息
    打开配置文件
vi /home/kafka/kafka_2.11-1.0.0/config/server.properties

其初始配置如下:

# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements.  See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License.  You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# see kafka.server.KafkaConfig for additional details and defaults

############################# Server Basics #############################

# The id of the broker. This must be set to a unique integer for each broker.
broker.id=0

############################# Socket Server Settings #############################

# The address the socket server listens on. It will get the value returned from 
# java.net.InetAddress.getCanonicalHostName() if not configured.
#   FORMAT:
#     listeners = listener_name://host_name:port
#   EXAMPLE:
#     listeners = PLAINTEXT://your.host.name:9092
#listeners=PLAINTEXT://:9092

# Hostname and port the broker will advertise to producers and consumers. If not set, 
# it uses the value for "listeners" if configured.  Otherwise, it will use the value
# returned from java.net.InetAddress.getCanonicalHostName().
#advertised.listeners=PLAINTEXT://your.host.name:9092

# Maps listener names to security protocols, the default is for them to be the same. See the config documentation for more details
#listener.security.protocol.map=PLAINTEXT:PLAINTEXT,SSL:SSL,SASL_PLAINTEXT:SASL_PLAINTEXT,SASL_SSL:SASL_SSL

# The number of threads that the server uses for receiving requests from the network and sending responses to the network
num.network.threads=3

# The number of threads that the server uses for processing requests, which may include disk I/O
num.io.threads=8

# The send buffer (SO_SNDBUF) used by the socket server
socket.send.buffer.bytes=102400

# The receive buffer (SO_RCVBUF) used by the socket server
socket.receive.buffer.bytes=102400

# The maximum size of a request that the socket server will accept (protection against OOM)
socket.request.max.bytes=104857600

############################# Log Basics #############################

# A comma seperated list of directories under which to store log files
log.dirs=/tmp/kafka-logs

# The default number of log partitions per topic. More partitions allow greater
# parallelism for consumption, but this will also result in more files across
# the brokers.
num.partitions=1
# The number of threads per data directory to be used for log recovery at startup and flushing at shutdown.
# This value is recommended to be increased for installations with data dirs located in RAID array.
num.recovery.threads.per.data.dir=1

############################# Internal Topic Settings  #############################

# The replication factor for the group metadata internal topics
"__consumer_offsets" and "__transaction_state"
# For anything other than development testing, a value greater than 1 is recommended for to ensure availability such as 3.
offsets.topic.replication.factor=1
transaction.state.log.replication.factor=1
transaction.state.log.min.isr=1
############################# Log Flush Policy #############################
# Messages are immediately written to the filesystem but by default we only fsync() to sync
# the OS cache lazily. The following configurations control the flush of data to disk.
# There are a few important trade-offs here:
#    1. Durability: Unflushed data may be lost if you are not using replication.
#    2. Latency: Very large flush intervals may lead to latency spikes when the flush does occur as there will be a lot of data to flush.
#    3. Throughput: The flush is generally the most expensive operation, and a small flush interval may lead to exceessive seeks.
# The settings below allow one to configure the flush policy to flush data after a period of time or
# every N messages (or both). This can be done globally and overridden on a per-topic basis.

# The number of messages to accept before forcing a flush of data to disk
#log.flush.interval.messages=10000

# The maximum amount of time a message can sit in a log before we force a flush
#log.flush.interval.ms=1000

############################# Log Retention Policy #############################

# The following configurations control the disposal of log segments. The policy can
# be set to delete segments after a period of time, or after a given size has accumulated.
# A segment will be deleted whenever *either* of these criteria are met. Deletion always happens
# from the end of the log.

# The minimum age of a log file to be eligible for deletion due to age
log.retention.hours=168

# A size-based retention policy for logs. Segments are pruned from the log unless the remaining
# segments drop below log.retention.bytes. Functions independently of log.retention.hours.
#log.retention.bytes=1073741824

# The maximum size of a log segment file. When this size is reached a new log segment will be created.
log.segment.bytes=1073741824

# The interval at which log segments are checked to see if they can be deleted according
# to the retention policies
log.retention.check.interval.ms=300000

############################# Zookeeper #############################

# Zookeeper connection string (see zookeeper docs for details).
# This is a comma separated host:port pairs, each corresponding to a zk
# server. e.g. "127.0.0.1:3000,127.0.0.1:3001,127.0.0.1:3002".
# You can also append an optional chroot string to the urls to specify the
# root directory for all kafka znodes.
zookeeper.connect=localhost:2181

# Timeout in ms for connecting to zookeeper
zookeeper.connection.timeout.ms=6000

############################# Group Coordinator Settings #############################

# The following configuration specifies the time, in milliseconds, that the GroupCoordinator will delay the initial consumer rebalance.
# The rebalance will be further delayed by the value of group.initial.rebalance.delay.ms as new members join the group, up to a maximum of max.poll.interval.ms.
# The default value for this is 3 seconds.
# We override this to 0 here as it makes for a better out-of-the-box experience for development and testing.
# However, in production environments the default value of 3 seconds is more suitable as this will help to avoid unnecessary, and potentially expensive, rebalances during application startup.
group.initial.rebalance.delay.ms=0
  • 修改如下配置:

    • 监听器列表
      将 #listeners=PLAINTEXT://:9092 的注释打开即为:
      listeners=PLAINTEXT://:9092
    • 发布在zk上的监听器,供客户端使用
      将 #advertised.listeners=PLAINTEXT://your.host.name:9092 的注释打开,且把 your.host.name 修改成本机的 IP 即为:
      advertised.listeners=PLAINTEXT://158.222.189.76:9092
      注:虽然把 your.host.name 修改成 IP 不够高大上,但是改成对应的主机名时,则须要在对应 client 端机器的 hosts 配置该主机名,极为不便。

    • zookeeper 连接信息
      将 zookeeper.connect=localhost:2181 修改到预计的zookeeper server 上,即为:
      zookeeper.connect=158.222.189.76:2181
      注:若 zookeeper 与 kafka 存在同一机器上,则可不改。

    • 日志目录(可选)
      默认日志存放在 /tmp/kafka-logs 目录下,但 /tmp 目录为 临时文件目录,在重启时会清空该目录,建议修改成其他目录:
      log.dirs=/home/kafka/kafka_2.11-1.0.0/kafka-logs

启动与停止

# 进入到 Kafka 的 KAFKA_HOME 目录下:
cd /home/kafka/kafka_2.11-1.0.0
# 启动 Kafka 服务
bin/kafka-server-start.sh config/server.properties
# 停止 Kafka 服务
bin/kafka-server-stop.sh

看到类似如下日志表示启动成功:

INFO Kafka version : 1.0.0 (org.apache.kafka.common.utils.AppInfoParser)
INFO Kafka commitId : aaa7af6d4a11b29d (org.apache.kafka.common.utils.AppInfoParser)
INFO [KafkaServer id=0] started (kafka.server.KafkaServer)
# 后台启动 Kafka
bin/kafka-server-start.sh config/server.properties &

部署 Kafka 集群

Kafka 集群环境的部署与单节点相差无几,同在 config/server.properties 配置文件中仅多出如下步骤:

  • 多节点
    在不同的物理机上都需要一份部署一个 Kafka server(若多个 server 部署在同一机器上,则称为:伪集群)。

  • broker 编号
    配置文件中默认为 0,集群环境需要每个物理节点都不相同,即:若节点 A 为 broker.id=0 那么节点 B 为 broker.id=1,节点 C 为 broker.id=2
    broker.id 的取值范围非负的整数。

  • zookeeper 连接
    连接到指定的 zookeeper server 上(多个以英文逗号分隔)。
    zookeeper.connect=IP1:2181,IP2:2181,IP3:2181

阅读更多

没有更多推荐了,返回首页