学习记录
opppps
zhenmeile
展开
-
学习markdown编辑器
学习markdown编辑器一级标题用一个#号开头二级标题用两个##开头功能快捷键合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注脚注释也是必不可少的KaTeX数学公式新的甘特图功能,丰富你的文章UML 图表FLowchart流程图导出与导入导出导入...原创 2019-01-25 09:41:31 · 132 阅读 · 0 评论 -
《Python数据分析与挖掘实战》学习笔记——航空公司客户价值分析
1.背景准确的客户分类是企业优化营销资源分配的重要依据。数据:航空公司的会员档案信息和乘坐航班记录目标:(1)用户分类 (2)不同客户类别特征分析,比较客户价值(3)不同客户提供不同营销策略2.分析已有的最广泛的模型:RFM模型三个指标分别是:最近消费时间间隔(Recency)、消费频率(Frequency)、消费金额(Monetary)在具体场景:航空客户价值分析,选择客户在一定...原创 2019-04-22 15:49:34 · 1662 阅读 · 0 评论 -
《Python数据分析与挖掘实战》学习笔记——家电用户行为分析与事件识别
1.背景与挖掘目标背景:根据热水器采集的用户时间序列数据,分析用户的使用行为,比较不同客户群的使用习惯,优化产品、制定营销策略。目标:(1)划分一次完整用水事件 (2)在划分的用水事件中识别洗浴事件2.分析数据抽取智能热水器状态改变或者水流量为非零时,每两秒采集一条状态数据,采集频率高,且数据来自大量用户,数据总量大。本例通过无放回随机抽样法抽取200家热水器用户从2014.1.1至2...原创 2019-04-23 13:51:30 · 1167 阅读 · 0 评论 -
《Python数据分析与挖掘实战》学习笔记——电力漏窃电用户自动识别
目标通过电力计量自动化系统采集到的各相电流、电压、功率因数等用电负荷数据及用电异常等终端报警信息,和在线稽查系统和现场稽查的记录的漏窃电用户信息提取漏窃电用户的关键特征,构建识别模型。利用实时监测数据,调用模型判断用户是否存在漏窃电行为。分析1. 数据抽取营销系统数据用户基本信息、违约窃电记录、计量方法计量自动化系统采集的数据实时负荷:时间点、计量点、总有功功率、A/B/...原创 2019-04-19 11:42:13 · 1841 阅读 · 1 评论 -
pandas常用函数
pandas数据选择df[7:10]选择行df.colname.unique()显示数据中某列所有不同值df.colname.numique()显示这些值的数目df.colname.value_counts()计算某列中某个数据出现的次数df.colname.sum()求某列数据的和df.join(pd.get_dummies(df.weekday,prefix='week...原创 2019-05-08 10:38:31 · 230 阅读 · 0 评论 -
天池新人实战赛o2o优惠券学习记录(特征工程&GBDT调参)
首先按照天池官方给出的教程,进行特征处理,构造用户、 商家、用户商家交互的共 40个特征,使用GBDT梯度提升树算法,GradientBoostingClassifier(n_estimators=100, learning_rate=1.0, max_depth=1, random_state=0)验证集上的平均AUC0.6317261536586201,提交官网后结果score:0.58...原创 2019-05-13 17:05:08 · 1262 阅读 · 0 评论