poj2226(*行列模型,二分图最小顶点覆盖)

/*
translation:
    给出一张图'.'代表普通草地,‘*’代表泥地。有宽度固定为1,长度任意的木板。求至少要用多少块木板
    才能覆盖所有的泥地而不覆盖任何的草地。
solution:
    二分图最小顶点覆盖
    考虑以木板作为结点。分为两部分,一部分是横木板,一部分是竖木板。将横木板和竖木板都覆盖住的
    泥地作为连接两边结点的边。这样求最小顶点覆盖即可实现每个泥地都被横木板或者竖木板覆盖,并且
    草地不被覆盖。
note:
    * 看出来这是一个行列建模。所以一开始的思路就是奔着以行、列为点的模型去建图。结果自然WA。原因
      是这样可能会覆盖草地。如下面的数据:
      ***
      *.*
      *** 这组数据答案是4,而用简单的行列模型求出来是3,因为中间的木板会覆盖住中间的一块草地。
      所以正确方法是用横着和竖着的木板代替行和列。每次都要用最左边和最上边的两个点来分别代表
      横竖两块木板。
*/
#include <iostream>
#include <cstdio>
#include <vector>
#include <cstring>

using namespace std;
const int maxn = 2500 + 5;

char field[maxn][maxn];
int match[maxn], row, col, V;
bool used[maxn];
vector<int> G[maxn];

void add_edge(int u, int v)
{
    G[u].push_back(v);
    G[v].push_back(u);
}

bool dfs(int v)
{
    used[v] = true;
    for(int i = 0; i < G[v].size(); i++) {
        int u = G[v][i], w = match[u];
        if(w < 0 || !used[w] && dfs(w)) {
            match[u] = v;
            match[v] = u;
            return true;
        }
    }
    return false;
}

int hungary()
{
    int res = 0;
    memset(match, -1, sizeof(match));
    for(int v = 0; v < V; v++) {
        if(match[v] < 0) {
            memset(used, 0, sizeof(used));
            if(dfs(v))  res++;
        }
    }
    return res;
}

int main()
{
    //freopen("in.txt", "r", stdin);
    while(~scanf("%d%d", &row, &col)) {
        for(int i = 0; i < maxn; i++)   G[i].clear();

        for(int i = 0; i < row; i++)
            scanf("%s", field[i]);

        for(int i = 0; i < row; i++) {
            for(int j = 0; j < col; j++) {
                if(field[i][j] == '*') {
                    int x = i, y = j;
                    while(x > 0 && field[x-1][j] == '*')    x--;
                    while(y > 0 && field[i][y-1] == '*')    y--;
                    add_edge(x * col + j, i * col + y + row * col);
                }
            }
        }

        V = 2 * row * col;
        printf("%d\n", hungary());
    }
    return 0;
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值