/*
translation:
给出一张图'.'代表普通草地,‘*’代表泥地。有宽度固定为1,长度任意的木板。求至少要用多少块木板
才能覆盖所有的泥地而不覆盖任何的草地。
solution:
二分图最小顶点覆盖
考虑以木板作为结点。分为两部分,一部分是横木板,一部分是竖木板。将横木板和竖木板都覆盖住的
泥地作为连接两边结点的边。这样求最小顶点覆盖即可实现每个泥地都被横木板或者竖木板覆盖,并且
草地不被覆盖。
note:
* 看出来这是一个行列建模。所以一开始的思路就是奔着以行、列为点的模型去建图。结果自然WA。原因
是这样可能会覆盖草地。如下面的数据:
***
*.*
*** 这组数据答案是4,而用简单的行列模型求出来是3,因为中间的木板会覆盖住中间的一块草地。
所以正确方法是用横着和竖着的木板代替行和列。每次都要用最左边和最上边的两个点来分别代表
横竖两块木板。
*/
#include <iostream>
#include <cstdio>
#include <vector>
#include <cstring>
using namespace std;
const int maxn = 2500 + 5;
char field[maxn][maxn];
int match[maxn], row, col, V;
bool used[maxn];
vector<int> G[maxn];
void add_edge(int u, int v)
{
G[u].push_back(v);
G[v].push_back(u);
}
bool dfs(int v)
{
used[v] = true;
for(int i = 0; i < G[v].size(); i++) {
int u = G[v][i], w = match[u];
if(w < 0 || !used[w] && dfs(w)) {
match[u] = v;
match[v] = u;
return true;
}
}
return false;
}
int hungary()
{
int res = 0;
memset(match, -1, sizeof(match));
for(int v = 0; v < V; v++) {
if(match[v] < 0) {
memset(used, 0, sizeof(used));
if(dfs(v)) res++;
}
}
return res;
}
int main()
{
//freopen("in.txt", "r", stdin);
while(~scanf("%d%d", &row, &col)) {
for(int i = 0; i < maxn; i++) G[i].clear();
for(int i = 0; i < row; i++)
scanf("%s", field[i]);
for(int i = 0; i < row; i++) {
for(int j = 0; j < col; j++) {
if(field[i][j] == '*') {
int x = i, y = j;
while(x > 0 && field[x-1][j] == '*') x--;
while(y > 0 && field[i][y-1] == '*') y--;
add_edge(x * col + j, i * col + y + row * col);
}
}
}
V = 2 * row * col;
printf("%d\n", hungary());
}
return 0;
}
poj2226(*行列模型,二分图最小顶点覆盖)
最新推荐文章于 2021-10-27 19:52:33 发布