📢📢📢📣📣📣
哈喽!大家好,我是「奇点」,江湖人称 singularity。刚工作几年,想和大家一同进步🤝🤝
一位上进心十足的【Java ToB端大厂领域博主】!😜😜😜
喜欢java和python,平时比较懒,能用程序解决的坚决不手动解决😜😜😜✨ 如果有对【java】感兴趣的【小可爱】,欢迎关注我
❤️❤️❤️感谢各位大可爱小可爱!❤️❤️❤️
————————————————如果觉得本文对你有帮助,欢迎点赞,欢迎关注我,如果有补充欢迎评论交流,我将努力创作更多更好的文章。
————————————————
全球AI新闻速递
1.火山引擎FORCE原动力大会,字节豆包9大模型介绍。
火山引擎FORCE原动力大会上,字节跳动宣布自主研发的“豆包大模型”系列,包含九款模型,设计全面,适应多样化的业务需求,包括豆包通用模型(Pro与Lite版本)、角色扮演、语音合成、声音复刻、语音识别、文生图、Function Call及向量化模型。
豆包通用模型Pro:为长文本处理优化的专业版LLM,擅长复杂任务如问答、内容创造与分析。
豆包通用模型Lite:轻量级版本,降低成本与延迟,为企业提供高效经济解决方案。
角色扮演模型:支持个性化角色创造,增强互动体验。
语音合成模型:生成自然语音,情感丰富,适用多场景。
声音复刻模型:快速克隆声音,支持跨语言,保真度高。
语音识别模型:高精度识别,低延迟,多语言覆盖。
文生图模型:擅长基于文本生成图片,尤其对中国文化元素的表现。
Function Call模型:优化功能识别与参数抽取,适用于工具调用复杂场景。
向量化模型:专为向量检索设计,强化知识库理解能力,多语言支持。
火山引擎的愿景是成为AI时代顶尖的开放云服务平台,利用全栈AI服务推动企业智能化转型,促进业务增长。字节跳动凭借大规模应用实践,不断提升模型性能并降低成本,以技术和行业经验赋能客户,加速大模型技术在各行各业的应用,引领智能化转型潮流。
2.MiniMax:推出海螺 AI。
3.纽约大学新研究:大模型推理步骤或可省略。
纽约大学对当前流行的思维链(Chain-of-Thought,CoT)技术提出了挑战,该技术原本认为能够提升大模型的推理能力。纽约大学的研究显示,使用省略号代替具体的推理步骤,模型推理结果并没有显著差异,这意味着增加计算量而非推理步骤本身可能是提升性能的关键。这项研究为AI领域带来了新的视角,提示我们在设计和使用大型语言模型时,需要更深入地理解其工作原理和性能提升的真正来源。
4.微软中国AI团队或去美国?
多位网友在脉脉、小红书等社交媒体上爆料称:微软中国部分员工收到公司邮件,询问是否愿意迁移至其他地区工作,选择包括美国、澳大利亚、爱尔兰等国家在内。涉及的员工包括AI platform 的Azure ML团队等,公司将负责亲属签证问题,或涉及上百名员工。员工需要在6月7日前给出答复。对此,微软相关人士回应表示,本次是给部分员工一个可选的内部调动机会,不会影响公司在国内的运营。
5.北京新增19款生成式人工智能服务商。
6.xAI与甲骨文洽谈100亿美元人工智能服务器租赁。
7.ChatGPT:iOS版更新,支持App首选语言设置中文。
8.Insta Coup: Instagram 联合创始人 Mike Krieger加入OpenAI 竞争对手 Anthropic(Claude 的制作者),担任新任首席产品官。
9.李彦宏:百度搜索 11% 结果由 AI 生成,搜索最可能成 AI 时代“杀手级 App”
10.搭载星火 AI 大模型,科大讯飞下月将推出语音台历产品。
11.数字化转型公司UST培训超过 80% 的员工提升生成式AI技能
全球数字化转型解决方案公司 UST 推出了一个培训计划,旨在培训超过2.5万名员工,提升他们在生成 AI(GenAI)领域的技能,并为他们提供职业发展机会。该公司的发言人表示,这一计划将建立在公司 “加强人工智能能力的悠久历史” 基础之上。
为了让员工保持与未来技术创新的前沿并做好未来准备,计划要求超过80% 的员工通过此培训提升技能。该计划紧随 UST AlphaAI 的发布,后者整合了 AI 产品,以增强企业的敏捷性,简化运营,并加速数字化转型之旅。
这个全面的培训计划将在 UST 与麻省理工学院计算机科学与人工智能实验室以及斯坦福人工智能实验室等知名学术机构的合作中建立,以获得宝贵的见解。
UST 的首席价值官兼全球发展中心运营负责人 Sunil Balakrishnan 表示,GenAI 培训计划将树立一个新的行业标准,将培训超过2.5万名员工,让他们了解从基础概念到前沿应用的所有内容。该计划可根据参与者的需要进行适应和定制,并提供对行业领先工具和平台(如 GitHub C o p i l o t)的实践经验。
UST 的首席人工智能架构师 Adnan Masood 表示,公司认识到在当今快节奏的数字化领域保持竞争力的关键在于持续提升员工的技能。他补充说:“随着生成 AI 继续颠覆行业和改变业务运营方式,我们致力于为员工提供有效利用这些技术和知识的工具。培训计划将增强人才,推动创新,并对客户和合作伙伴产生积极影响。”
UST 的 GenAI 培训计划将为员工提供一系列培训课程,从生成的基础知识到前沿应用,以满足不同员工的需求。通过与顶尖学术机构的合作,训计划将融入最新的研究成果和实践经验,使员工能够掌握生成 AI 的核心概念和技。此外,培训计划还将提供实践机会,让员工熟悉业界领先的工具和平台,GitHub C o p i l o t,以便他们能够在实际工作中应用所学到的知识。通过这一培训计划,UST 望加强员工的技能,推动创新,并为客户和合作伙伴创造积极的影响。
12.李佳琦称今年618大促是难的:AI技术将使电商迎来新机遇。
人工智能的未来
为什么人工智能搜索可以彻底改变在线经济
到今年年底,全球数十亿人将能够使用谷歌推出的全新人工智能摘要工具。据悉,OpenAI等其他公司也在开发类似的人工智能搜索平台。
人工智能爱好者认为,这一变革将为互联网用户带来便利,使他们能够在搜索引擎中直接获得详尽的答案,无需浏览众多搜索结果。
然而,这种便捷也带来隐性成本。许多网站依赖点击和互动来增加访问量,如果用户不再需要访问这些网站获取信息,它们将面临经营困境。这引发了一个问题:如果大量网站因缺乏访问而倒闭,人工智能搜索引擎的信息来源将受限。
SEO行业可能也将受到冲击。以往,网站会聘请SEO专家来优化搜索引擎排名,但如果人工智能搜索引擎取代传统搜索,这一行业可能迎来衰退。
解决这一问题的方法并非简单。搜索引擎可能需要承担一定的财务责任,如通过支付费用来引用外部资源,类似于人工智能公司与报纸合作的模式。或者,人工智能搜索公司可能考虑自建新闻机构以支持搜索服务。
AI 助力微软碳排放量增加近 30%
公司将要求某些供应商在 2030 年之前使用 100% 无碳电力
微软的二氧化碳排放量自 2020 年以来增加了近 30%,这主要是由于为满足对云服务和人工智能支持的需求,增加了数据中心的建设和配置。这些数据中心的建设和运营导致间接排放量显著增加。虽然微软实现了在范围 1 和 2 排放上的减少,但其总排放量的大部分(超过 96%)仍来自范围 3,包括供应链和设备的生命周期等间接来源。为了应对这一挑战,微软在其供应链中推动使用100%无碳电力,并扩大了低功耗技术的使用。此外,公司还在全球范围内投资水资源补充项目,以减少对淡水资源的依赖,并计划到2030年实现建筑和运营零浪费。尽管面临挑战,微软仍然看好人工智能技术带来的长远利益,并计划加快相关基础设施的发展。