全球AI新闻速递
1.广东:到 2025 年全省 AI 核心产业规模将超过 3000 亿元。
2.Chrome浏览器:开启内测内置AI大模型Gemini Nano。
3.华为:将基于盘古大模型打造超级助手小艺,并融合 5G-A。
4.360 AI搜索,预测高考作文押题10中3。
360 AI 新品发布会上,周鸿祎展示了 360 AI 搜索的预测能力并大胆预测 2024 年高考作文题目,高考语文考试结束后发现其预测的 10 道题中精准押中北京卷、全国甲卷和新课标 I 卷三道作文题,这证明了 360AI 搜索在大数据分析和预测方面实力强大,全国甲卷题目与押题建议中青少年心理健康方向契合,北京卷题目与押题建议中历史传承与时代创新关系类似,新课标 I 卷题目与押题结果中对人工智能影响认知的预测几乎一致,这既展现了 360AI 搜索在人工智能领域的底蕴,也预示着人工智能在教育领域的重要作用将越发凸显。
5.谷歌Play商店:宣布整顿生成式AI类App。
6.OpenAI:发布关于 GPT-4 可解释性论文。
7.微星:Claw 8 AI+游戏掌机。
8.德国:LLM 已涌现出欺骗能力。
9.AI 模型可识别狗叫声,高达70%。
10.GPT-4利用“零日”漏洞攻破网站。
11.俄罗斯科技巨头 Yandex 宣布开源“YaFSDP”大语言模型训练工具:大幅提升 GPU 利用率,对 Llama 3 可实现 26% 加速。
12.BIOS 遇上大模型,系微推出“业界首款 AI 驱动固件辅助技术”aiBIOS。
13.OpenAI 官宣新任首席财务官、首席产品官,并与苹果达成合作。
14.Copilot Pro 订阅魅力下降,微软 7 月 10 日下线用户自建 GPT 服务。
15.中国第一台全天候激光智能除草机器人落地:哈工大新成果,环境零污染。
16.苹果 watchOS 11 发布:新增“训练负荷”功能,推出全新健康数据应用“活力”。
人工智能的未来
iOS 即将推出的最重要 AI 功能
今年早些时候,OpenAI 演示了开发人员与聊天机器人之间的对话,其效果非常逼真,有人将其比作科幻电影。经过数月的猜测,现在苹果终于发布了备受期待的 AI 公告。
下面我们将介绍 Siri 的 AI 升级。但首先,让我们来介绍一下未来几个月内 iOS 上将推出的全新“Apple Intelligence”功能。
图片:
在几秒钟内创建自定义的、由人工智能生成的“genmoji”和插图,包括以您自己或您的朋友为特色的插图
使用新的图像棒,将草图转换为详细图像或根据文本生成自定义图像
自动清理和增强照片,并通过用通俗易懂的语言描述来查找特定照片
文本:
校对电子邮件,总结要点,并生成撰写电子邮件、笔记和主题演讲的不同方式,以找到最适合您的选项
将会议内容转录到 Notes 应用中,然后询问有关通话的摘要和其他信息
借助 iPad 的新智能脚本功能,实时清理你的手写内容,或将消息或网页中的文本复制到自己的手写内容中
隐私:
低级人工智能任务将直接在你的设备上进行,而服务器将帮助完成更密集的人工智能任务
苹果表示,你的设备将能够了解你的个人生活,比如你的联系人中哪个是你的女儿,她的足球比赛在哪里举行,以及到达那里需要多长时间
但该公司坚称这些信息是加密的,任何人都无法访问,甚至连公司自己也无法访问
微软和白宫致力于改善医院的网络安全
微软宣布了一项新的网络安全计划,为服务于 6000 多万美国农村居民的医院提供支持。
该项目由白宫、美国医院协会和全国农村卫生协会协助实施。它是微软“人工智能健康”计划的一部分,该计划与非营利组织、研究人员和致力于应对全球健康挑战的组织合作,推动远程医疗的发展,改善临床决策和预测。
2023 年,医疗保健行业报告的勒索软件攻击数量超过任何其他关键基础设施行业,针对医疗保健行业的勒索软件攻击增长了近 130%。微软针对农村医院的新网络安全计划旨在为这些医院提供免费和低成本的技术服务,以及免费培训和支持。
对于独立的危重医院和农村急救医院,微软将为其针对小型组织优化的安全产品提供非营利性定价和折扣,最高可享受 75% 的折扣。对于一些已经使用符合条件的微软解决方案的大型农村医院,该公司将免费提供其最先进的安全套件一年。除此之外,微软还将为参与的农村医院免费提供至少一年的 Windows 10 安全更新,并为员工提供免费的网络安全评估和网络安全培训。
美国医院协会主席兼首席执行官里克·波拉克 (Rick Pollack) 表示:“医院和医疗系统投入了大量资源来防范网络攻击,但他们无法独自完成这项工作。网络安全是一项共同责任,微软的这些投资有助于加强这一责任。
“乡村医院通常是社区医疗服务的主要来源,因此确保医院正常运营并免受网络攻击至关重要。我们感谢微软挺身而出,提供专业知识和资源,帮助确保美国医疗安全网的安全。”
私有云计算:云端 AI 隐私的新前沿
由 Apple 安全工程与架构 (SEAR)、用户隐私、核心操作系统 (Core OS)、服务工程 (ASE) 以及机器学习与人工智能 (AIML) 撰写
Apple Intelligence 是一款个人智能系统,为 iPhone、iPad 和 Mac 带来强大的生成模型。对于需要使用更大的基础模型对复杂数据进行推理的高级功能,我们创建了私有云计算 (PCC),这是一种专为私有 AI 处理而设计的突破性云智能系统。私有云计算首次将 Apple 设备业界领先的安全性和隐私性扩展到云端,确保发送到 PCC 的个人用户数据不会被用户以外的任何人访问,甚至 Apple 也无法访问。PCC 采用定制的 Apple 芯片和专为隐私设计的强化操作系统构建,我们相信它是有史以来为大规模云 AI 计算部署的最先进的安全架构。
Apple 长期以来一直主张在设备上进行数据处理,将其作为用户数据安全和隐私的基石。仅存在于用户设备上的数据在定义上是分散的,不会受到任何集中攻击点的攻击。当 Apple 负责云端用户数据时,我们会使用我们服务中最先进的安全技术来保护这些数据 — 对于最敏感的数据,我们相信端到端加密是我们最强大的防御措施。对于不适合使用端到端加密的云服务,我们会努力以临时方式或使用不相关的随机标识符来处理用户数据,以掩盖用户的身份。
云端安全且私密的 AI 处理带来了巨大的新挑战。数据中心中强大的 AI 硬件可以通过大型、复杂的机器学习模型满足用户的请求,但它需要以未加密的方式访问用户的请求和随附的个人数据。这阻碍了端到端加密的使用,因此云 AI 应用程序迄今为止一直采用传统的云安全方法。这些方法带来了一些关键挑战:
云 AI 安全和隐私保证很难验证和执行。如果云 AI 服务声明它不会记录某些用户数据,安全研究人员通常无法验证这一承诺,而且服务提供商通常也无法持久执行这一承诺。例如,新版本的 AI 服务可能会引入额外的例行日志记录,无意中记录敏感的用户数据,而研究人员无法检测到这种情况。同样,终止 TLS 的外围负载平衡器可能会在故障排除会话期间批量记录数千个用户请求。
很难为云端的 AI 提供运行时透明度。云端 AI 服务不透明:提供商通常不会指定用于运行其服务的软件堆栈的详细信息,而这些详细信息通常被视为专有。即使云端 AI 服务仅依赖于安全研究人员可检查的开源软件,用户设备(或浏览器)也没有广泛部署的方法来确认其连接的服务是否正在运行其声称要运行的软件的未修改版本,或检测到服务上运行的软件已发生更改。
对于云 AI 环境来说,对特权访问实施严格的限制是一项挑战。云 AI 服务非常复杂,大规模运行成本高昂,其运行时性能和其他运营指标不断受到云服务提供商的站点可靠性工程师和其他管理人员的监控和调查。在发生中断和其他严重事件期间,这些管理员通常可以利用对服务的高特权访问,例如通过 SSH 和等效的远程 shell 接口。虽然这些特权的、突破玻璃界面的访问控制可能设计得很好,但在它们被积极使用时,对它们施加可执行的限制是非常困难的。例如,在中断期间试图从实时服务器备份数据的服务管理员可能会在此过程中无意中复制敏感的用户数据。更有害的是,勒索软件运营商等犯罪分子经常试图破坏服务管理员凭据,以利用特权访问接口并窃取用户数据。
当可以使用 iPhone 和 Mac 等 Apple 设备进行设备上计算时,安全和隐私优势显而易见:用户控制自己的设备,研究人员可以检查硬件和软件,运行时透明度通过安全启动以加密方式保证,并且 Apple 不保留任何特权访问(作为一个具体的例子,数据保护文件加密系统以加密方式阻止 Apple 禁用或猜测给定 iPhone 的密码)。
然而,为了处理更复杂的请求,Apple Intelligence 需要能够借助云端更大、更复杂的模型。为了让这些云请求达到用户对我们的设备所期望的安全和隐私保障,传统的云服务安全模型并不是一个可行的起点。相反,我们需要首次将我们行业领先的设备安全模型带到云端。
本博文的其余部分是对私有云计算的初步技术概述,待 PCC 测试版推出后,将进行深入探讨。我们知道研究人员会有很多详细的问题,我们期待在后续博文中回答更多问题。
设计私有云计算
我们着手构建私有云计算,并提出了一系列核心要求:
对个人用户数据进行无状态计算。私有云计算必须将其收到的个人用户数据专门用于满足用户的请求。这些数据绝不能提供给除用户以外的任何人,即使是 Apple 员工,即使在主动处理期间也不行。在将响应返回给用户后,不得保留这些数据,包括通过日志记录或调试。换句话说,我们希望有一种强大的无状态数据处理形式,其中个人数据不会在 PCC 系统中留下任何痕迹。
可执行的保证。安全和隐私保证在技术上完全可执行时是最强的,这意味着必须能够约束和分析对整个私有云计算系统的保证至关重要的所有组件。使用我们之前的示例,很难推断 TLS 终止负载平衡器在调试会话期间会对用户数据执行什么操作。因此,PCC 不能依赖此类外部组件来实现其核心安全和隐私保证。同样,收集服务器指标和错误日志等操作要求必须通过不破坏隐私保护的机制来支持。
无特权运行时访问。私有云计算不得包含特权接口,这些接口可使 Apple 站点可靠性工作人员绕过 PCC 隐私保证,即使在解决中断或其他严重事件时也是如此。这也意味着 PCC 不得支持可在运行时扩大特权访问范围的机制,例如通过加载其他软件。
非目标性。攻击者应该无法在不尝试广泛入侵整个 PCC 系统的情况下尝试入侵属于特定、目标私有云计算用户的个人数据。即使是那些能够尝试对供应链中的 PCC 节点进行物理攻击或尝试恶意访问 PCC 数据中心的极其老练的攻击者,这一点也必须适用。换句话说,有限的 PCC 入侵不得允许攻击者将特定用户的请求引导到被入侵的节点;针对用户应该需要进行可能被检测到的广泛攻击。为了更直观地理解这一点,将其与传统的云服务设计进行对比,在传统的云服务设计中,每个应用程序服务器都配备了整个应用程序数据库的数据库凭据,因此入侵单个应用程序服务器就足以访问任何用户的数据,即使该用户与被入侵的应用程序服务器没有任何活动会话。
可验证的透明度。安全研究人员需要能够高度自信地验证我们对私有云计算的隐私和安全保证是否符合我们的公开承诺。我们早先已经要求我们的保证是可执行的。那么,假设安全研究人员有足够的系统访问权限,他们就能够验证这些保证。但最后一个要求,即可验证的透明度,更进一步,消除了假设:安全研究人员必须能够验证私有云计算的安全和隐私保证,并且他们必须能够验证在 PCC 生产环境中运行的软件是否与他们在验证保证时检查的软件相同。
这是一组非同寻常的要求,我们相信它代表着对任何传统云服务安全模型的一次跨越。
引入私有云计算节点
私有云计算的信任根源是我们的计算节点:定制的服务器硬件,将 Apple 芯片的强大功能和安全性带入数据中心,并采用与 iPhone 相同的硬件安全技术,包括Secure Enclave和安全启动。我们将此硬件与新操作系统配对:iOS 和 macOS 基础的强化子集,专门用于支持大型语言模型 (LLM) 推理工作负载,同时提供极窄的攻击面。这使我们能够利用 iOS 安全技术,例如代码签名和沙盒。
在此基础上,我们构建了一套自定义云扩展程序,充分考虑了隐私问题。我们排除了传统上对数据中心管理至关重要的组件,例如远程 shell 和系统自省和可观察性工具。我们将这些通用软件组件替换为专门为确定性地向 SRE 员工提供一小部分有限的运营指标而构建的组件。最后,我们使用Swift on Server构建了一个新的机器学习堆栈,专门用于托管我们的基于云的基础模型。
让我们再看一下我们的核心私有云计算要求以及我们为实现这些要求而构建的功能。
无状态计算和可执行保证
对于端到端加密的服务(例如 iMessage),服务运营商无法访问通过系统传输的数据。此类设计能够确保隐私的关键原因之一就是它们可以防止服务对用户数据进行计算。由于私有云计算需要能够访问用户请求中的数据,以便大型基础模型能够满足该请求,因此完整的端到端加密不是一种选择。相反,PCC 计算节点必须在处理过程中对用户数据的隐私进行技术实施,并且在其工作周期完成后必须无法保留用户数据。
我们设计私有云计算是为了对其处理用户数据的方式做出几项保证:
用户的设备将数据发送到 PCC 的唯一目的是满足用户的推理请求。PCC 仅使用该数据来执行用户请求的操作。
用户数据仅保留在处理请求的 PCC 节点上,直到返回响应。PCC 在完成请求后会删除用户的数据,并且在返回响应后不会以任何形式保留任何用户数据。
Apple 永远不会获取用户数据 — — 即使对生产服务或硬件具有管理权限的员工也是如此。
当 Apple Intelligence 需要利用私有云计算时,它会构建一个请求(由提示以及所需的模型和推理参数组成),该请求将作为云模型的输入。然后,用户设备上的 PCC 客户端会将此请求直接加密到它首先确认有效且经过加密认证的 PCC 节点的公钥。这提供了从用户设备到经过验证的 PCC 节点的端到端加密,确保请求在传输过程中不会被这些受到高度保护的 PCC 节点之外的任何东西访问。支持数据中心服务(例如负载平衡器和隐私网关)在此信任边界之外运行,并且没有解密用户请求所需的密钥,从而有助于我们实现可执行的保证。
接下来,我们必须保护 PCC 节点的完整性,并防止对 PCC 用于解密用户请求的密钥进行任何篡改。系统使用安全启动和代码签名来强制保证只有经过授权和加密测量的代码才能在节点上执行。可以在节点上运行的所有代码都必须是经过 Apple 签名、针对该特定 PCC 节点获得批准并由安全区域加载的信任缓存的一部分,以便在运行时无法更改或修改。这还可以确保无法创建 JIT 映射,从而防止在运行时编译或注入新代码。此外,所有代码和模型资产都使用与签名系统卷相同的完整性保护。最后,安全区域提供强制保证,即用于解密请求的密钥不能被复制或提取。
私有云计算软件堆栈旨在确保用户数据不会泄露到信任边界之外,也不会在请求完成后保留,即使出现实施错误也是如此。安全区域在每次重启时都会随机化数据卷的加密密钥,并且不会保留这些随机密钥,从而确保写入数据卷的数据在重启后无法保留。换句话说,每次 PCC 节点的安全区域处理器重启时,都会强制保证数据卷被加密擦除。PCC 节点上的推理过程会在完成后删除与请求相关的数据,用于处理用户数据的地址空间会定期回收,以限制可能意外保留在内存中的任何数据的影响。
最后,为了使我们的可执行保证有意义,我们还需要防止可能绕过这些保证的攻击。指针认证代码和沙盒等技术可以抵御此类攻击,并限制攻击者在 PCC 节点内的水平移动。推理控制和调度层是用 Swift 编写的,可确保内存安全,并使用单独的地址空间来隔离请求的初始处理。这种内存安全性和最小特权原则的结合消除了对推理堆栈本身的所有攻击,并限制了成功攻击可以获得的控制和能力级别。
![]() | ![]() |
无特权运行时访问
我们设计了私有云计算来确保特权访问不允许任何人绕过我们的无状态计算保证。
首先,我们有意没有在 PCC 节点上包含远程 shell 或交互式调试机制。我们的代码签名机制可防止此类机制加载其他代码,但这种开放式访问将提供广泛的攻击面,从而破坏系统的安全性或隐私性。除了不包含 shell(远程或其他方式)之外,PCC 节点无法启用开发人员模式,也不包含调试工作流所需的工具。
接下来,我们构建了系统的可观察性和管理工具,并配备了隐私保护措施,旨在防止用户数据泄露。例如,该系统甚至不包含通用日志记录机制。相反,只有预先指定、结构化和经过审核的日志和指标才能离开节点,并且多个独立的审核层有助于防止用户数据通过这些机制意外泄露。对于传统的云 AI 服务,此类机制可能允许具有特权访问权限的人观察或收集用户数据。
总之,这些技术提供了可强制执行的保证,即只有专门指定的代码才能访问用户数据,并且用户数据在系统管理期间不会泄漏到 PCC 节点之外。
非目标性
我们针对私有云计算的威胁模型包括具有计算节点物理访问权限和高水平复杂性的攻击者,即攻击者拥有资源和专业知识来破坏系统的某些硬件安全属性并可能提取计算节点正在主动处理的数据。
我们通过两种方式防御此类攻击:
我们通过强化的 PCC 硬件供应链来补充 Apple 硅片的内置保护,这样大规模进行硬件攻击不仅成本高昂,而且很容易被发现。
我们确保小规模攻击不能用于针对特定用户的数据,从而限制小规模攻击的影响。
私有云计算硬件安全始于制造阶段,在密封每台服务器并激活其防篡改开关之前,我们会盘点 PCC 节点的组件并执行高分辨率成像。当它们到达数据中心时,我们会进行广泛的重新验证,然后才允许服务器配置 PCC。该过程涉及多个 Apple 团队交叉检查来自独立来源的数据,并且该过程由与 Apple 无关的第三方观察员进一步监控。最后,为每个 PCC 节点的安全区域 UID中的密钥颁发证书。如果用户的设备无法验证其证书,则不会向任何 PCC 节点发送数据。
这些流程可广泛保护硬件免受攻击。为了防范可能避开检测的较小但更复杂的攻击,私有云计算使用了一种我们称之为目标扩散的方法来确保请求不会根据用户或其内容路由到特定节点。
目标扩散从请求元数据开始,该元数据不包含有关源设备或用户的任何个人身份信息,仅包含有关请求的有限上下文数据,这些数据是启用到适当模型的路由所必需的。此元数据是用户请求中唯一可供在 PCC 信任边界之外运行的负载均衡器和其他数据中心组件使用的部分。元数据还包括基于RSA 盲签名的一次性凭证,用于授权有效请求而不将其与特定用户绑定。此外,PCC 请求会经过由第三方运营的OHTTP中继,这会在请求到达 PCC 基础设施之前隐藏设备的源 IP 地址。这可以防止攻击者使用 IP 地址识别请求或将其与个人关联。这也意味着攻击者必须同时破坏第三方中继和我们的负载均衡器,才能根据源 IP 地址引导流量。
用户设备仅加密部分 PCC 节点的请求,而不是整个 PCC 服务。当用户设备询问时,负载均衡器会返回最有可能准备好处理用户推理请求的 PCC 节点子集 — 但是,由于负载均衡器没有关于为其选择节点的用户或设备的识别信息,因此它无法偏向目标用户。通过以这种方式限制可以解密每个请求的 PCC 节点,我们确保如果单个节点受到攻击,它将无法解密超过一小部分的传入请求。最后,负载均衡器对 PCC 节点的选择具有统计可审计性,以防止高度复杂的攻击,攻击者可以攻击 PCC 节点并获得对 PCC 负载均衡器的完全控制。
可验证的透明度
我们认为,允许安全研究人员验证私有云计算的端到端安全和隐私保障是确保公众对系统持续信任的关键要求。传统的云服务不会向研究人员提供其完整的生产软件映像 — 即使他们这样做了,也没有通用机制让研究人员验证这些软件映像是否与生产环境中实际运行的软件映像相匹配。(存在一些专门的机制,例如 Intel SGX 和 AWS Nitro 证明。)
当我们推出私有云计算时,我们将采取特别措施,将每个 PCC 生产版本的软件映像公开用于安全研究。这一承诺也是一项可执行的保证:用户设备将只愿意向能够以加密方式证明正在运行公开列出的软件的 PCC 节点发送数据。我们希望确保安全和隐私研究人员能够检查私有云计算软件、验证其功能并帮助识别问题——就像他们对 Apple 设备所做的那样。
我们对可验证透明度的承诺包括:
在仅可附加且加密防篡改的透明日志中发布在 PCC 上运行的所有代码的测量结果。
使日志和相关的二进制软件图像公开,以供隐私和安全专家检查和验证。
发布并维护一套供研究人员分析 PCC 节点软件的官方工具。
通过Apple Security Bounty计划奖励重要的研究成果。
每一个生产私有云计算软件映像都将发布以供独立二进制检查 — 包括操作系统、应用程序和所有相关可执行文件,研究人员可以根据透明度日志中的测量结果进行验证。软件将在纳入日志后的 90 天内发布,或在相关软件更新可用后发布(以较早时间为准)。一旦发布被签名到日志中,它就无法在未经检测的情况下被删除,就像iMessage 联系人密钥验证的密钥透明度机制使用的日志支持映射数据结构一样。
正如我们提到的,用户设备将确保它们只与运行授权和可验证软件映像的 PCC 节点进行通信。具体来说,用户的设备将只将其请求有效负载密钥包装到那些经证明的测量结果与公共透明日志中的软件版本相匹配的 PCC 节点的公钥上。并且,防止加载未经授权的软件的严格代码签名技术也确保 PCC 节点上的所有代码都包含在证明中。
以这种方式记录和检查私有云计算软件,有力地证明了我们致力于在平台上进行独立研究的承诺。但我们希望确保研究人员能够快速掌握最新情况,验证我们的 PCC 隐私声明并查找问题,因此我们将采取三个具体步骤:
我们将发布 PCC 虚拟研究环境:一套工具和图像,可在搭载 Apple 芯片的 Mac 上模拟 PCC 节点,并且可以启动经过最少修改以成功实现虚拟化的 PCC 软件版本。
在我们发布每个生产 PCC 版本的二进制图像时,为了进一步帮助研究,我们还会定期发布安全关键的 PCC 源代码的子集。
对于任何 Apple 平台来说,PCC 图像都将首次以纯文本形式包含 sepOS 固件和 iBoot 引导加载程序,这使得研究人员比以往更轻松地研究这些关键组件。
Apple 安全赏金计划将奖励整个私有云计算软件堆栈的研究成果 — — 对于任何破坏我们隐私主张的问题,我们将提供特别丰厚的奖励。
研究人员教人工智能说话
摘要:密歇根大学的一项新研究利用经过人类语言训练的人工智能模型来解码狗叫声背后的含义——以 70% 的准确率识别品种、年龄、性别和情绪状态等细节。
细节:
研究人员收集了 74 只不同品种、年龄和情境背景的狗的叫声。
这些声音被输入到一个最初设计用于分析人类声音的人工智能模型中,该模型经过 960 小时的语音训练,并针对狗进行了微调。
人工智能能够根据狗叫声预测出具体狗的类型、区分狗的品种和性别,并将狗叫声与玩耍、攻击等情绪状态相匹配,准确率高达 70%。
重要性:人工智能不仅能弥合全球人类之间的语言鸿沟,而且可能还能弥合跨物种之间的语言鸿沟。与其他聪明的动物交流(或至少更好地理解它们)似乎是一个技能问题,迟早会得到解决。
人工智能与生产力
如何使用 Krea AI 生成动画视频
1.前往Krea AI并登录您的帐户。
2.转到 AI 视频生成选项。
3.您可以看到AI视频动画的默认示例。
4.通过单击添加框架和文本提示中的删除选项来删除它。
5.转到关键帧并单击+ 添加关键帧按钮。将弹出一个窗口。
6.您可以在此处上传自己的图像,也可以使用 AI 生成图像。
7.从侧面面板设置视频样式,并从设置中更改纵横比和运动强度。
8.现在按照您想要的顺序放置图像,并在下面添加文本提示。
9.完成后,单击“生成视频”进行渲染,并等待几秒钟直到视频增强。
10.下载您的动画视频并与您的朋友分享。