【LeetCode650. 只有两个键的键盘】java DP

题目

最初在一个记事本上只有一个字符 ‘A’。你每次可以对这个记事本进行两种操作:

Copy All (复制全部) : 你可以复制这个记事本中的所有字符(部分的复制是不允许的)。
Paste (粘贴) : 你可以粘贴你上一次复制的字符。
给定一个数字 n 。你需要使用最少的操作次数,在记事本中打印出恰好 n 个 ‘A’。输出能够打印出 n 个 ‘A’ 的最少操作次数。

示例 1:

输入: 3
输出: 3
解释:
最初, 我们只有一个字符 ‘A’。
第 1 步, 我们使用 Copy All 操作。
第 2 步, 我们使用 Paste 操作来获得 ‘AA’。
第 3 步, 我们使用 Paste 操作来获得 ‘AAA’。
说明:

n 的取值范围是 [1, 1000] 。

思路

dp[i]表示,通过复制粘贴操作,得到 i 个字符,最少需要几步操作。

如果一个数是素数,那么最少操作就是一开始复制一个,最后一个个粘贴;

如果一个数不是素数,那么最少操作就可以按它的因数分解一下,简化操作。

举个例子,比如12,可以分解为 以下几种情况:

12 = 2*6, 需要操作CPCPPPPP总共8步

12 = 3*4, 需要操作CPPCPPP总共7步

12 = 4*3, 需要操作CPPPCPP总共7步

12 = 6*2, 需要操作CPPPPPCP总共8步

其实可以发现,因子相同的情况下,交换因子相乘的顺序,需要的步骤是一样的。所以我们可以简化一下分解的步骤,只需要找到小于sqrt(n)的因子即可。

假设找到的因子是 j ,那么需要的最小步骤就是 dp[j] + dp[i/j],其中,dp[j]表示需要多少步生成这个因子,dp[i/j]表示需要多少步基于这个因子得到 i。

本质是求解最小因数分解之和

代码

class Solution {
    public int minSteps(int n) {
        //就是看能以最少的步骤打印出n个A
        //求最小因数分解之和
        if(n==0){
            return 0;
        }
        if(n==1){
            return 0;
        }
        int[] dp = new int[n+1];
        dp[0] = 0;
        dp[1] = 0;
        for(int i=2;i<=n;i++){
            dp[i] = i;//每个初始化最多n步
            for(int j = 2;j<=(int)Math.sqrt(n);j++){
                if(i%j==0){
                    dp[i] = dp[j]+dp[i/j];
                    break;
                }
            } 
        }
        return dp[n];
    }
}
发布了157 篇原创文章 · 获赞 8 · 访问量 4万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览