常用 conda 命令

常用 conda 命令

# 查看帮助
conda -h 
# 查看conda版本
conda --version
# 安装 matplotlib 
conda install matplotlib
# 查看已安装的包
conda list 
# 包更新
conda update matplotlib
# 删除包
conda remove matplotlib

环境管理

# 基于python3.6版本创建一个名字为test的python独立环境
conda create --name test python=3.6 
# 激活此环境
activate test  
source activate test # linux/mac
# 退出当前环境
deactivate test 
# 删除该环境
conda remove -n test --all
# 或者 
conda env remove  -n test

# 查看所有安装的python环境
conda info -e

其他命令

# 更新conda本身
conda update conda
# 更新anaconda 应用
conda update anaconda
# 更新python,假设当前python环境是3.6.1,而最新版本是3.6.2,那么就会升级到3.6.2
conda update python

 

### Conda 常用命令及使用方法 #### 查看已创建的环境列表 为了查看当前系统上所有的Conda环境,可以使用`conda env list`、`conda info -e`或`conda info --envs`这三条命令之一[^1]。 ```bash conda env list ``` #### 获取帮助信息 当遇到不熟悉的命令时,可以通过`conda help`来获取详细的帮助文档[^2]。 ```bash conda help ``` #### 更新Conda本身 保持Conda处于最新版本对于安全性和性能至关重要。通过下面这条命令可实现更新: ```bash conda update conda ``` #### 创建新的虚拟环境 创建一个新的Python环境能够有效隔离不同项目的依赖关系。基本语法如下所示: ```bash conda create --name myenv python=3.8 ``` 这里`myenv`代表新建环境的名字,而`python=3.8`指定了该环境中使用的Python版本号[^3]。 #### 卸载软件包 如果不再需要某个特定的库,则可通过`conda remove`指令将其移除: ```bash conda remove numpy ``` 此操作仅会删除名为numpy的单个包;若要清理整个环境中的所有内容,建议先激活目标环境再执行上述命令。 #### 复制现有环境 有时候希望基于现有的工作空间快速建立另一个相似的工作区,这时就可以利用克隆功能: ```bash conda create --name new_env_name --clone old_env_name ``` 其中`old_env_name`是要复制的目标环境名称,而`new_env_name`则是新生成环境所赋予的新名字[^5]。 #### 安装额外的软件包 向已经存在的环境中添加更多工具或库是一件很常见的事情,比如想要加入pandas这个数据分析库的话,就应当这样做: ```bash conda install pandas ``` 以上就是一些常用Conda命令介绍以及它们的具体应用方式[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值