DTOJ #5892. 网络

题解

考虑 k = 1 k=1 k=1 的情况,显然这是一个最小割。

考虑 k k k 更大的情况,我们需要让每一条路径上至少有 k k k 个点,所以想到对上面进行拓展:将原图复制 k k k 遍,每一张图都相当于 k = 1 k=1 k=1 的情况,建一个超级源点和超级汇点即可。

但是这样会有一个问题:一个点可能会被割掉多次。所以对于一条边 u → v u \to v uv ,我们相邻两张图 i , j i,j i,j 中的 u i u_i ui 连一条向 v j v_j vj 的边。这样就可以保证若割 u i → v i u_i \to v_i uivi 不会再把 u j → v j u_j \to v_j ujvj 割掉

代码

#include<bits/stdc++.h>
#define LL long long
using namespace std;
const int N=1e5+10;
const LL INF=1e12;
int n,s,t,c[N],m,k,S,T;
int tot=1,ver[N],fst[N],nxt[N];
LL edge[N],ans;
inline void add(int x,int y,LL z){
	ver[++tot]=y;nxt[tot]=fst[x];fst[x]=tot;edge[tot]=z;
	ver[++tot]=x;nxt[tot]=fst[y];fst[y]=tot;edge[tot]=0;
}
int d[N],now[N],v[N];
int cnt,p[N];
queue<int> q;
inline bool bfs(){
	while(q.size())q.pop();
	for(int i=0;i<=2*n*k+1;++i)d[i]=0;
	d[S]=1;now[S]=fst[S];q.push(S);
	while(q.size()){
		int x=q.front();q.pop();
		for(int i=fst[x];i;i=nxt[i]){
			int y=ver[i];if(d[y]||!edge[i])continue;
			now[y]=fst[y];d[y]=d[x]+1;q.push(y);
			if(y==T)return true;
		}
	}
	return false;
}
LL dinic(int x,LL flow){
	if(x==T)return flow;
	LL res=flow;
	for(int i=now[x];i;i=nxt[i]){
		now[x]=i;
		int y=ver[i];if(d[y]!=d[x]+1||!edge[i])continue;
		LL k=dinic(y,min(edge[i],res));
		if(!k)d[y]=0;
		res-=k;edge[i]-=k;edge[i^1]+=k;
		if(!res)break;
	}
	return flow-res;
}
int main(){
	scanf("%d%d%d",&n,&m,&k);
	scanf("%d%d",&s,&t);
	S=0;T=k*2*n+1;
	for(int i=1;i<=n;++i){
		scanf("%d",&c[i]);
		for(int j=0;j<k;++j){
			add(i+j*2*n,i+n+j*2*n,c[i]);
		}
		for(int j=0;j<k-1;++j){
			add(i+j*2*n,i+n+j*2*n+2*n,INF);
		}
	}
	for(int i=1;i<=m;++i){
		int x,y;
		scanf("%d%d",&x,&y);
		for(int j=0;j<k;++j){
			add(x+n+j*2*n,y+j*2*n,INF);
		}
		for(int j=0;j<k-1;++j){
			add(x+n+j*2*n,y+j*2*n+2*n,INF);
		}
	}
	for(int j=0;j<k;++j)add(S,s+j*2*n,INF),add(t+n+j*2*n,T,INF);
	while(bfs())ans+=dinic(S,INF);
//	cout<<"FAQ "<<ans<<endl;
	if(ans>=INF){
		printf("-1\n");
		return 0;
	}
	while(q.size())q.pop();
	q.push(S);
	while(q.size()){
		int x=q.front();q.pop();
		v[x]=1;//cout<<"V "<<x<<endl;
		for(int i=fst[x];i;i=nxt[i]){
			int y=ver[i];if(v[y]||!edge[i])continue;
			q.push(y);
		}
	}
	for(int i=1;i<=n;++i){
		for(int j=0;j<k;++j)if(v[i+2*n*j]^v[i+n+2*n*j])p[++cnt]=i;
	}
	printf("%d\n",cnt);
	for(int i=1;i<=cnt;++i)printf("%d ",p[i]);
	printf("\n");
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值