题解
考虑 k = 1 k=1 k=1 的情况,显然这是一个最小割。
考虑 k k k 更大的情况,我们需要让每一条路径上至少有 k k k 个点,所以想到对上面进行拓展:将原图复制 k k k 遍,每一张图都相当于 k = 1 k=1 k=1 的情况,建一个超级源点和超级汇点即可。
但是这样会有一个问题:一个点可能会被割掉多次。所以对于一条边 u → v u \to v u→v ,我们相邻两张图 i , j i,j i,j 中的 u i u_i ui 连一条向 v j v_j vj 的边。这样就可以保证若割 u i → v i u_i \to v_i ui→vi 不会再把 u j → v j u_j \to v_j uj→vj 割掉
代码
#include<bits/stdc++.h>
#define LL long long
using namespace std;
const int N=1e5+10;
const LL INF=1e12;
int n,s,t,c[N],m,k,S,T;
int tot=1,ver[N],fst[N],nxt[N];
LL edge[N],ans;
inline void add(int x,int y,LL z){
ver[++tot]=y;nxt[tot]=fst[x];fst[x]=tot;edge[tot]=z;
ver[++tot]=x;nxt[tot]=fst[y];fst[y]=tot;edge[tot]=0;
}
int d[N],now[N],v[N];
int cnt,p[N];
queue<int> q;
inline bool bfs(){
while(q.size())q.pop();
for(int i=0;i<=2*n*k+1;++i)d[i]=0;
d[S]=1;now[S]=fst[S];q.push(S);
while(q.size()){
int x=q.front();q.pop();
for(int i=fst[x];i;i=nxt[i]){
int y=ver[i];if(d[y]||!edge[i])continue;
now[y]=fst[y];d[y]=d[x]+1;q.push(y);
if(y==T)return true;
}
}
return false;
}
LL dinic(int x,LL flow){
if(x==T)return flow;
LL res=flow;
for(int i=now[x];i;i=nxt[i]){
now[x]=i;
int y=ver[i];if(d[y]!=d[x]+1||!edge[i])continue;
LL k=dinic(y,min(edge[i],res));
if(!k)d[y]=0;
res-=k;edge[i]-=k;edge[i^1]+=k;
if(!res)break;
}
return flow-res;
}
int main(){
scanf("%d%d%d",&n,&m,&k);
scanf("%d%d",&s,&t);
S=0;T=k*2*n+1;
for(int i=1;i<=n;++i){
scanf("%d",&c[i]);
for(int j=0;j<k;++j){
add(i+j*2*n,i+n+j*2*n,c[i]);
}
for(int j=0;j<k-1;++j){
add(i+j*2*n,i+n+j*2*n+2*n,INF);
}
}
for(int i=1;i<=m;++i){
int x,y;
scanf("%d%d",&x,&y);
for(int j=0;j<k;++j){
add(x+n+j*2*n,y+j*2*n,INF);
}
for(int j=0;j<k-1;++j){
add(x+n+j*2*n,y+j*2*n+2*n,INF);
}
}
for(int j=0;j<k;++j)add(S,s+j*2*n,INF),add(t+n+j*2*n,T,INF);
while(bfs())ans+=dinic(S,INF);
// cout<<"FAQ "<<ans<<endl;
if(ans>=INF){
printf("-1\n");
return 0;
}
while(q.size())q.pop();
q.push(S);
while(q.size()){
int x=q.front();q.pop();
v[x]=1;//cout<<"V "<<x<<endl;
for(int i=fst[x];i;i=nxt[i]){
int y=ver[i];if(v[y]||!edge[i])continue;
q.push(y);
}
}
for(int i=1;i<=n;++i){
for(int j=0;j<k;++j)if(v[i+2*n*j]^v[i+n+2*n*j])p[++cnt]=i;
}
printf("%d\n",cnt);
for(int i=1;i<=cnt;++i)printf("%d ",p[i]);
printf("\n");
return 0;
}