堆排序(Heapsort)是指利用堆积树(堆)这种数据结构所设计的一种排序算法,它是选择排序的一种。可以利用数组的特点快速定位指定索引的元素。堆分为大根堆和小根堆,是完全二叉树。大根堆的要求是每个节点的值都不大于其父节点的值,即A[PARENT[i]] >= A[i]。在数组的非降序排序中,需要使用的就是大根堆,因为根据大根堆的要求可知,最大的值一定在堆顶。小根堆则反之。
小根堆分析:
从最后一个非叶子节点开始,和子节点比较,和最小的互换,依次进行到根节点,完成即最小根堆。
示例程序:
之后可以再借助新数组,依次拆除树,即可以完成升序。
我采用不多开数组,只用本身数组,每次将根(最小)与数组末互换,拆除的树组成的数组为倒序。
#include <bits/stdc++.h>
using namespace std;
//整理节点
void MinHeapify(int *arr,int size,int element)
{
int lchild=element*2+1,rchild=lchild+1;//左右子树
while(rchild<size)//子树均在范围内
{
if(arr[element]<=arr[lchild]&&arr[element]<=arr[rchild])//如果比左右子树都小,完成整理
{
return;
}
if(arr[lchild]<=arr[rchild])//如果左边最小
{
swap(arr[element],arr[lchild]);//把左面的提到上面
element=lchild;//循环时整理子树
}
else//否则右面最小
{
swap(arr[element],arr[rchild]);//同理
element=rchild;
}
lchild=element*2+1;
rchild=lchild+1;//重新计算子树位置
}
if(lchild<size&&arr[lchild]<arr[element])//只有左子树且子树小于自己
{
swap(arr[lchild],arr[element]);
}
}
//堆排序time:O(nlgn)
void heap_sort(int *arr,int size)
{
int i;
for(i=size-1;i>=0;i--)//从子树开始整理树
{
MinHeapify(arr,size,i);
}
while(size>0)//拆除树
{
swap(arr[size-1],arr[0]);//将根(最小)与数组最末交换
size--;//树大小减小
MinHeapify(arr,size,0);//整理树
}
}
int main(){
int n;
cin>>n;
int arr[n];
for(int i=0;i<n;i++){
cin>>arr[i];
}
heap_sort(arr,n);
for(int i=0;i<n;i++)
cout<<arr[i]<<" ";
return 0;
}