1. 安装Anaconda
到相关网站下载Anaconda安装包,如
https://repo.anaconda.com/archive/
2. 安装CUDA
输入nvidia-smi查看CUDA版本
nvidia-smi
下载地址:
https://developer.nvidia.com/cuda-toolkit-archive
查看
3. 安装CUDnn
下载地址:
https://developer.nvidia.cn/rdp/cudnn-archive
找到对应cuda的版本下载压缩包
-
Windows安装cuDNN
下载对应的包
根据CUDA的版本下载相应的CUDAnn,将下载的压缩包解压缩后,把里面cudnn中的的include,lib,bin文件夹里面的所有文件分别复制到CUDN版本对应的文件夹里,如CUDN是11.2的版本,则找到如下目录中对应的include,lib,bin文件夹里。
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.2
【配置环境】
安装Pytorch
# CUDA 12.8 (官网推荐中没有12.8的安装指令时,按下面代码安装)-c 是指定渠道
conda install pytorch torchvision torchaudio cudatoolkit=12.8 -c pytorch-nightly
-
安装Pytorch
建议使用Conda创建虚拟环境之后,再安装Pytorch
到这个网站上选择相应的cuda版本后进行复制指令安装
https://pytorch.org/get-started/locally/
■ Conda指令
# CUDA 12.8 (官网推荐中没有12.8的安装指令时,按下面代码安装)-c 是指定渠道
conda install pytorch torchvision torchaudio cudatoolkit=12.8 -c pytorch-nightly
# CUDA 11.8
conda install pytorch==2.0.0 torchvision==0.15.0 torchaudio==2.0.0 pytorch-cuda=11.8 -c pytorch -c nvidia
# CUDA 11.7
conda install pytorch==2.0.0 torchvision==0.15.0 torchaudio==2.0.0 pytorch-cuda=11.7 -c pytorch -c nvidia
# CPU Only
conda install pytorch==2.0.0 torchvision==0.15.0 torchaudio==2.0.0 cpuonly -c pytorch
注意事项:在安装Pytorch过程中建议添加国内镜像源,如中科院镜像、清华镜像或者阿里镜像,添加之后再安装。
■ pip指令
# AMD ROCM 5.4.2 (Linux only)
pip install torch==2.0.0+rocm5.4.2 torchvision==0.15.1+rocm5.4.2 torchaudio==2.0.1 --index-url https://download.pytorch.org/whl/rocm5.4.2
# CUDA 12.8 (官网推荐中没有12.8的安装指令时,按下面代码安装)
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu128
# CUDA 11.8
pip install torch==2.0.0+cu118 torchvision==0.15.1+cu118 torchaudio==2.0.1 --index-url https://download.pytorch.org/whl/cu118
# CUDA 11.7
pip install torch==2.0.0+cu117 torchvision==0.15.1+cu117 torchaudio==2.0.1 --index-url https://download.pytorch.org/whl/cu117
# CPU only
pip install torch==2.0.0+cpu torchvision==0.15.1+cpu torchaudio==2.0.1 --index-url https://download.pytorch.org/whl/cpu
因为CUDA版本为11.2,需要查找对应的pytorch版本,参考命令如下:
conda install pytorch==1.8.0 torchvision==0.9.0 torchaudio==0.8.0 cudatoolkit=11.2 -c pytorch -c conda-forge
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121
验证是否正确安装
在安装完成之后,使用Pycharm 测试下Pytorch 是否使用GPU加速,代码如下:
- 检查pytorch以及TensorFlow能否使用cuda和gpu可以用下面代码进行测试
import torch
print(torch.__version__)
print(torch.cuda.is_available())
print(torch.zeros(1).cuda())