深度学习环境配置

1. 安装Anaconda

到相关网站下载Anaconda安装包,如

https://repo.anaconda.com/archive/

2. 安装CUDA

输入nvidia-smi查看CUDA版本

nvidia-smi

下载地址:

https://developer.nvidia.com/cuda-toolkit-archive

查看

3. 安装CUDnn

下载地址:

https://developer.nvidia.cn/rdp/cudnn-archive

找到对应cuda的版本下载压缩包

  • Windows安装cuDNN

下载对应的包

根据CUDA的版本下载相应的CUDAnn,将下载的压缩包解压缩后,把里面cudnn中的的include,lib,bin文件夹里面的所有文件分别复制到CUDN版本对应的文件夹里,如CUDN是11.2的版本,则找到如下目录中对应的include,lib,bin文件夹里。

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.2

【配置环境】

安装Pytorch

# CUDA 12.8  (官网推荐中没有12.8的安装指令时,按下面代码安装)-c 是指定渠道
conda install pytorch torchvision torchaudio cudatoolkit=12.8 -c pytorch-nightly
  1. 安装Pytorch

建议使用Conda创建虚拟环境之后,再安装Pytorch

到这个网站上选择相应的cuda版本后进行复制指令安装

https://pytorch.org/get-started/locally/

■ Conda指令

# CUDA 12.8  (官网推荐中没有12.8的安装指令时,按下面代码安装)-c 是指定渠道
conda install pytorch torchvision torchaudio cudatoolkit=12.8 -c pytorch-nightly


# CUDA 11.8
conda install pytorch==2.0.0 torchvision==0.15.0 torchaudio==2.0.0 pytorch-cuda=11.8 -c pytorch -c nvidia


# CUDA 11.7
conda install pytorch==2.0.0 torchvision==0.15.0 torchaudio==2.0.0 pytorch-cuda=11.7 -c pytorch -c nvidia


# CPU Only
conda install pytorch==2.0.0 torchvision==0.15.0 torchaudio==2.0.0 cpuonly -c pytorch

注意事项:在安装Pytorch过程中建议添加国内镜像源,如中科院镜像、清华镜像或者阿里镜像,添加之后再安装。

■ pip指令

# AMD ROCM 5.4.2 (Linux only)
pip install torch==2.0.0+rocm5.4.2 torchvision==0.15.1+rocm5.4.2 torchaudio==2.0.1 --index-url https://download.pytorch.org/whl/rocm5.4.2


# CUDA 12.8 (官网推荐中没有12.8的安装指令时,按下面代码安装)
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu128


# CUDA 11.8
pip install torch==2.0.0+cu118 torchvision==0.15.1+cu118 torchaudio==2.0.1 --index-url https://download.pytorch.org/whl/cu118


# CUDA 11.7
pip install torch==2.0.0+cu117 torchvision==0.15.1+cu117 torchaudio==2.0.1 --index-url https://download.pytorch.org/whl/cu117


# CPU only
pip install torch==2.0.0+cpu torchvision==0.15.1+cpu torchaudio==2.0.1 --index-url https://download.pytorch.org/whl/cpu

因为CUDA版本为11.2,需要查找对应的pytorch版本,参考命令如下:

conda install pytorch==1.8.0 torchvision==0.9.0 torchaudio==0.8.0 cudatoolkit=11.2 -c pytorch -c conda-forge

pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121

验证是否正确安装

在安装完成之后,使用Pycharm 测试下Pytorch 是否使用GPU加速,代码如下:

  • 检查pytorch以及TensorFlow能否使用cuda和gpu可以用下面代码进行测试
import torch


print(torch.__version__)
print(torch.cuda.is_available())
print(torch.zeros(1).cuda())

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

壹米玖坤

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值