yolo源码分析
文章平均质量分 79
蜜丝特潮
不是程序猿的程序员
展开
-
Yolo的卷积运算源码图解之im2col.c
yolo卷积源码解读找了好久,但网上好多的解读,有点误人子弟, 之前还找到一片注释写的比源代码还多几倍的,以为我就这样看懂了? 不存在的 QWQ,后来直接自己看懂了源码,却看不懂了注释 无奈.jpg 于是有了下面的自己理解: 先放出源码: #include "im2col.h" #include <stdio.h> /* ** 从输入的多通道数...原创 2018-05-12 12:15:09 · 2703 阅读 · 5 评论 -
YOLO前向传播图解
1.yolo在构建网络函数, network parse_network_cfg(char *filename) { // 从神经网络结构参数文件中读入所有神经网络层的结构参数,存储到sections中, // sections的每个node包含一层神经网络的所有结构参数 list *sections = read_cfg(filename); // 获取s...原创 2018-05-21 18:52:29 · 2816 阅读 · 3 评论 -
yolo反向传播源码分析
反向传播 首先符号定义: $a^l:第l层输出$ $z^l:a^l为经激活函数前的值,即:a^l=\sigma(z^l)$ $C:误差,如整个网络的输出和标签的差值的平方和:$ $ b^l:第l层偏置$ $w^l:第l层权重$ δl=∂C∂zl−1:第l层的敏感度图δl=∂C∂zl−1:第l层的敏感度图\delta ^{l}=\frac{\partial C}{\partial z^{l-...原创 2018-05-20 11:07:13 · 2149 阅读 · 0 评论 -
BatchNormal推导和yolo源码解析
E(Xi).D(Xi)E(Xi).D(Xi)E(X_i).D(X_i):可以理解为XiXiX_i所在分布的期望值 样本均值:μA=X¯=1m∑mi=1XiμA=X¯=1m∑i=1mXi\mu_A=\bar X=\frac 1 m \sum_{i=1}^mX_i 因为抽样和样本同分布,所以: 样本期望:μ=E(Xi)=E(μA)=E(x)μ=E(Xi)=E(μA)=E(x)\mu=E(X_i)...原创 2018-06-01 18:01:30 · 3820 阅读 · 6 评论