集合的基本运算

集合的运算等式:

常用的集合运算不等式:

试题

A,B,C是集合,证明:(A-B)-C=A-(B∪C)

【答案】

设A、B、C是集合,证明 (A∪B)-C=(A-C)∪(B-C)。

【答案】

已知A={1,2,3},A-B={1,2},则A∩~B=_______。

【答案】 {1,2}

设集合A={1,2,3,4,5,6},集合B={x丨x=n2+1,n∈N,x<20},则A∪B=________。

【答案】{1,2,3,4,5,6,10,17},

  因为集合B={1,2,5,10,17},所以A∪B={1,2,3,4,5,6,10,17}。

对任意集合A、B、C,推导出下列集合等式成立的充要条件
(1)(A-B)∪(A-C)=A
(2)(A-B)∪(A-C)=∅ 

【答案】

(1)

(A-B)∪(A-C)

   =(A∩~B)∪(A∩~C)

   = A∩(~B∪~C)

   = A∩~(B∩C)

   = A-(B∩C)
因此,当且仅当A∩B∩C=∅时,(A-B)∪(A-C)=A。

(2)由(1)可知:

(A-B)∪(A-C)=∅

<=>  A-(B∩C) = ∅

<=>  A⊆(B∩C) 

因此,充要条件为 A⊆(B∩C) 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值