1,题目描述
2,题目分析
将数字分解有三种可能性,dp[j] * dp[i - j],j * dp[i - j],j * (i - j),找到最大的即可
①使用dp[i]表示正整数i的最大乘积,则dp[i]=max{dp[i-1]*1,(i-1)*1,dp[i-2]*2,(i-2)*2,...,dp[i-(i-1)]*(i-1),(i-(i-1))*(i-1)};
②由①可知,dp[i]的状态就能转化为其他dp[1]...dp[i-1]可得,但事实并没有这么麻烦,因为这些正整数拆分最终总会拆分为2,3和少数的1.比如:
2:1*1=1;
3:1*2=2;
4:2*2=4;
5:2*3=6;
因此调整状态转移方程为:
dp[i]=max(dp[i-2]*2,(i-2)*2,dp[i-3]*3,(i-3)*3);
3,代码实现
class Solution {
public:
int integerBreak(int n) {
vector<int> dp(n + 1);
dp[0] = 0;
dp[1] = 1;
dp[2] = 1;
for(int i = 3; i <= n; i ++)
{
int max = 1;
for(int j = 1; j < i; j ++)
{
if(dp[j] * dp[i - j] > max)
max = dp[j] * dp[i - j];
if(j * dp[i - j] > max)
max = j * dp[i - j];
if(j * (i - j) > max)
max = j * (i - j);
}
dp[i] = max;
}
return dp[n];
}
};