谈 heuristic

本文探讨了启发式算法和启发函数的概念,通过实例解释了它们在问题解决中的应用,如A*算法中的作用。启发式算法源于实际经验,而启发函数则是算法决策的依据,模仿人类思维过程。尽管有时术语会被滥用,但启发式方法和启发函数在解决问题时提供了有效途径。
摘要由CSDN通过智能技术生成

很多文章中会提及 heuristic approach、heuristic algorithm、启发式算法,启发函数 等术语,但是对于什么是heuristic,却并没有解释得很清楚。

启发,顾名思义,是教师 启发引导 学生学习。

关于 heuristic 的一些描述:

掌握领域知识,标准是能设计简单Heuristic(启发式的)的solution
什么时候需要ML?

  • 对问题的要求是从60%提高到80%的时候
  • Heuristic已经复杂到很难维护了(比如说当有些IDS里部署的规则已经达到几千条仍无法cover的时候)

article link

二、启发式搜索算法
1.贪婪最佳优先
在Dijkstra算法中,我已经发现了其最终要的缺陷,搜索存在盲目性。在这里,我们只针对这个痛点,采用贪婪最佳优先搜索来解决。如何解决?我们只需稍微改变下观念即可,在Dijkstra算法中,优先队列采用的是,每个顶点到起始顶点的预估值来进行排序。在贪婪最佳优先搜索采用的是,每个顶点到目标顶点的预估值来进行排序。
三、启发函数
f ( n ) = g ( n ) + h ( n ) f(n)=g(n) +h(n)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值