13、普通数组-最大子数组和

 

思路

  1. 卡登算法(Kadane's Algorithm)是一种用于解决“最大子数组和”问题的高效算法。这个问题的目标是在一个整数数组中找到具有最大和的连续子数组。卡登算法的美妙之处在于它的简洁性和高效性——它可以在单次遍历中解决问题,时间复杂度为 O(n),其中 n 是数组的长度。

基本概念

  1. 卡登算法基于这样一个事实:连续子数组的最大和要么是当前元素本身,要么是当前元素加上前一个子数组的和(前提是这个累加的和是正数)。算法通过遍历数组并在每个步骤中更新当前子数组的最大和来工作。

算法步骤

  1. 初始化两个变量:
    1. curMax:存储当前子数组的最大和。
    2. globalMax:存储迄今为止找到的最大子数组和。
  2. 遍历数组:
    1. 对于数组中的每个元素,将其与 curMax(即当前子数组的和)相加。
    2. 如果加上当前元素的 curMax 变得更大,那么继续累加。
    3. 如果 curMax 变为负数,重置 curMax 为 0。负数不会对寻找最大子数组和有帮助。
  3. 更新全局最大值:
    1. 在每次迭代中,比较 curMax 和 globalMax,并更新 globalMax 为两者中的较大值。
  4. 返回结果:
    1. 遍历完成后,globalMax 包含了最大子数组的和。

关键思想

局部最优和全局最优:

         curMax 代表以当前元素结尾的子数组的最大和,这是局部最优解。而 globalMax 代表迄今为止的全局最优解。
        处理负数:算法的关键是如何处理负数。如果当前子数组的和变成负数,它就不可能是最优的子数组,因此重置 curMax 为 0,表示从下一个元素重新开始计算。

class Solution {
   public static int maxSubArray(int[] nums) {
    // 初始化当前子数组的和为 0
    int cur = 0;
    // 初始化最大子数组和为最小可能的整数
    int max = Integer.MIN_VALUE;

    // 遍历数组中的每个元素
    for (int i = 0; i < nums.length; i++) {
        // 将当前元素加到当前子数组的和中
        cur += nums[i];

        // 更新最大子数组和
        // 如果当前子数组的和比之前记录的最大子数组和大,则更新最大子数组和
        max = Math.max(max, cur);

        // 如果当前子数组的和变成负数,则重置为 0
        // 因为任何包含负和的子数组都不可能是最大子数组的一部分
        cur = cur < 0 ? 0 : cur;
    }

    // 返回最大子数组和
    return max;
  }

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值