@T两部电梯的测试用例设计OC
先说一部电梯的情况,再说两部联动
------一部电梯情况------
一、 UI测试
1)电梯的外观是否完好,是否美观
2)按钮的位置和顺序是否正常等
3)承重和人数是否有标识
二、 功能测试
1、 正常测试
1)操作每个按键是否正常响应并高亮(开关门、楼层、电话、报警)
2)上升和下降是否可以实现
3)开关门是否正常
4)超时是否有提示
5)超载是否有提示
6)上升和下降的过程中操作是否可以响应
7)是否有楼层号按两次取消功能
2、异常测试
1)同时电梯外上下键
2)同时按开门和关门
3)多次快速按同一按钮
4)按当前楼层
5)电梯关门时,门口放障碍物
6)运行过程中停电
三、 性能测试
1)开关门的响应时间
2)运行速度
3)承载重量
四、 压力测试
1)在最大承载重量的情况,长时间运行,是否正常
2)撞击电梯壁是否无影响
五、 安全测试
1)是否有监控功能
2)停电后是否坠落
3)是否通风
4)是否有信号
5)门口有障碍物是否开门
------两部联动------
(1)2部均空闲时,采取就近原则
(2)有一部运行时,以同行方向且顺路电梯优先运行,否则安排空闲电梯
(3) 2部均运行时,以方向同行且顺路的优先运行
(4) 电梯在上行或下行时若满载,遇到有人等待电梯,是否停靠
功能快捷键
撤销:Ctrl/Command + Z
重做:Ctrl/Command + Y
加粗:Ctrl/Command + B
斜体:Ctrl/Command + I
标题:Ctrl/Command + Shift + H
无序列表:Ctrl/Command + Shift + U
有序列表:Ctrl/Command + Shift + O
检查列表:Ctrl/Command + Shift + C
插入代码:Ctrl/Command + Shift + K
插入链接:Ctrl/Command + Shift + L
插入图片:Ctrl/Command + Shift + G
查找:Ctrl/Command + F
替换:Ctrl/Command + G
合理的创建标题,有助于目录的生成
直接输入1次#,并按下space后,将生成1级标题。
输入2次#,并按下space后,将生成2级标题。
以此类推,我们支持6级标题。有助于使用TOC
语法后生成一个完美的目录。
如何改变文本的样式
强调文本 强调文本
加粗文本 加粗文本
标记文本
删除文本
引用文本
H2O is是液体。
210 运算结果是 1024.
插入链接与图片
链接: link.
图片:
带尺寸的图片:
居中的图片:
居中并且带尺寸的图片:
当然,我们为了让用户更加便捷,我们增加了图片拖拽功能。
如何插入一段漂亮的代码片
去博客设置页面,选择一款你喜欢的代码片高亮样式,下面展示同样高亮的 代码片
.
// An highlighted block
var foo = 'bar';
生成一个适合你的列表
- 项目
- 项目
- 项目
- 项目
- 项目1
- 项目2
- 项目3
- 计划任务
- 完成任务
创建一个表格
一个简单的表格是这么创建的:
项目 | Value |
---|---|
电脑 | $1600 |
手机 | $12 |
导管 | $1 |
设定内容居中、居左、居右
使用:---------:
居中
使用:----------
居左
使用----------:
居右
第一列 | 第二列 | 第三列 |
---|---|---|
第一列文本居中 | 第二列文本居右 | 第三列文本居左 |
SmartyPants
SmartyPants将ASCII标点字符转换为“智能”印刷标点HTML实体。例如:
TYPE | ASCII | HTML |
---|---|---|
Single backticks | 'Isn't this fun?' |
‘Isn’t this fun?’ |
Quotes | "Isn't this fun?" |
“Isn’t this fun?” |
Dashes | -- is en-dash, --- is em-dash |
– is en-dash, — is em-dash |
创建一个自定义列表
-
Markdown
- Text-to- HTML conversion tool Authors
- John
- Luke
如何创建一个注脚
一个具有注脚的文本。1
注释也是必不可少的
Markdown将文本转换为 HTML。
KaTeX数学公式
您可以使用渲染LaTeX数学表达式 KaTeX:
Gamma公式展示 Γ ( n ) = ( n − 1 ) ! ∀ n ∈ N \Gamma(n) = (n-1)!\quad\forall n\in\mathbb N Γ(n)=(n−1)!∀n∈N 是通过欧拉积分
Γ ( z ) = ∫ 0 ∞ t z − 1 e − t d t . \Gamma(z) = \int_0^\infty t^{z-1}e^{-t}dt\,. Γ(z)=∫0∞tz−1e