凸优化
akala啦
这个作者很懒,什么都没留下…
展开
-
深入理解拉格朗日乘子法(Lagrange Multiplier) 和KKT条件
原文:http://blog.csdn.net/xianlingmao/article/details/7919597 在求取有约束条件的优化问题时,拉格朗日乘子法(Lagrange Multiplier) 和KKT条件是非常重要的两个求取方法,对于等式约束的优化问题,可以应用拉格朗日乘子法去求取最优值;如果含有不等式约束,可以应用KKT条件去求取。当然,这两个方法求得的结果只是必要条件转载 2016-12-19 22:22:06 · 90 阅读 · 0 评论 -
lasso的解释
http://freemind.pluskid.org/machine-learning/sparsity-and-some-basics-of-l1-regularization/#d20da8b6b2900b1772cb16581253a77032cec97e转载 2018-07-26 15:35:25 · 1720 阅读 · 0 评论