# S-Nim

Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 7162    Accepted Submission(s): 3026

Problem Description
Arthur and his sister Caroll have been playing a game called Nim for some time now. Nim is played as follows:

The starting position has a number of heaps, all containing some, not necessarily equal, number of beads.

The players take turns chosing a heap and removing a positive number of beads from it.

The first player not able to make a move, loses.

Arthur and Caroll really enjoyed playing this simple game until they recently learned an easy way to always be able to find the best move:

Xor the number of beads in the heaps in the current position (i.e. if we have 2, 4 and 7 the xor-sum will be 1 as 2 xor 4 xor 7 = 1).

If the xor-sum is 0, too bad, you will lose.

Otherwise, move such that the xor-sum becomes 0. This is always possible.

It is quite easy to convince oneself that this works. Consider these facts:

The player that takes the last bead wins.

After the winning player's last move the xor-sum will be 0.

The xor-sum will change after every move.

Which means that if you make sure that the xor-sum always is 0 when you have made your move, your opponent will never be able to win, and, thus, you will win.

Understandibly it is no fun to play a game when both players know how to play perfectly (ignorance is bliss). Fourtunately, Arthur and Caroll soon came up with a similar game, S-Nim, that seemed to solve this problem. Each player is now only allowed to remove a number of beads in some predefined set S, e.g. if we have S =(2, 5) each player is only allowed to remove 2 or 5 beads. Now it is not always possible to make the xor-sum 0 and, thus, the strategy above is useless. Or is it?

your job is to write a program that determines if a position of S-Nim is a losing or a winning position. A position is a winning position if there is at least one move to a losing position. A position is a losing position if there are no moves to a losing position. This means, as expected, that a position with no legal moves is a losing position.

Input
Input consists of a number of test cases. For each test case: The first line contains a number k (0 < k ≤ 100 describing the size of S, followed by k numbers si (0 < si ≤ 10000) describing S. The second line contains a number m (0 < m ≤ 100) describing the number of positions to evaluate. The next m lines each contain a number l (0 < l ≤ 100) describing the number of heaps and l numbers hi (0 ≤ hi ≤ 10000) describing the number of beads in the heaps. The last test case is followed by a 0 on a line of its own.

Output
For each position: If the described position is a winning position print a 'W'.If the described position is a losing position print an 'L'. Print a newline after each test case.

Sample Input
2 2 5 3 2 5 12 3 2 4 7 4 2 3 7 12 5 1 2 3 4 5 3 2 5 12 3 2 4 7 4 2 3 7 12 0

Sample Output
LWW WWL

//
//  main.cpp
//  HDU1536
//
//  Created by teddywang on 2016/8/30.
//

#include <iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int s[101],m,n,sg[11000];

int mex(int b)
{
if(sg[b]!=-1) return sg[b];
int vis[110];
memset(vis,0,sizeof(vis));
for(int i=0;i<m;i++)
{
if(b>=s[i])
{
sg[b-s[i]]=mex(b-s[i]);
vis[sg[b-s[i]]]=1;
}
else break;
}
int i=0;
while(1)
{
if(!vis[i]) return i;
else i++;
}
}

int main()
{
while(scanf("%d",&m)&&m)
{
memset(s,0,sizeof(s));
for(int i=0;i<m;i++)
{
scanf("%d",&s[i]);
}
sort(s,s+m);
memset(sg,-1,sizeof(sg));
sg[0]=0;
scanf("%d",&n);
for(int i=0;i<n;i++)
{
int l,ans=0,buf;
scanf("%d",&l);
for(int j=0;j<l;j++)
{
scanf("%d",&buf);
sg[buf]=mex(buf);
ans^=sg[buf];
}
if(ans==0) cout<<"L";
else cout<<"W";
}
cout<<endl;
}
}


#### 【POJ2960】S-Nim SG函数 博弈 裸题模板题

2015-01-12 22:53:00

#### S-Nim（hdu1536+SG函数）

2015-08-04 21:41:44

#### hdu 1536、hdu 1944 S-Nim（博弈SG函数）

2012-09-04 18:19:56

#### [ACM] hdu 1536 S-Nim（Nim组合博弈 SG函数打表）

2014-04-11 15:00:10

#### HDU_1536 S-Nim(SG函数)

2015-08-16 11:49:49

#### poj2960——S-Nim（SG函数）

2016-05-11 21:15:20

#### 博弈论 SG函数

2016-04-12 21:36:28

#### POJ-2960（S-Nim）——博弈论，SG函数

2015-09-23 14:39:50

#### HDU 1536 S-Nim（sg函数）

2015-09-16 21:04:47

#### POJ 2960 S-Nim (sg函数)

2017-08-10 19:57:40

## 不良信息举报

HDU1536&&HDU1944 S-Nim SG函数