数据结构之时间.空间复杂度分析

本文介绍了数据结构中的时间复杂度和空间复杂度分析,强调了在算法设计中考虑最坏情况和忽略常数的重要性。通过斐波那契数列的递归与非递归实现,以及二分查找的递归和非递归版本,详细分析了它们的时间复杂度(O(n)和O(log2^n))和空间复杂度(O(N)和O(1))。
摘要由CSDN通过智能技术生成


      在很多数据结构的面试题中看似简单,但是对题目的要求却挺高,主要就体现在复杂度分析方面。复杂度又分为时间复杂度和空间复杂度。

1.时间复杂度

时间复杂度实际就是函数,函数计算执行的基本操作次数 .

在进行时间复杂度分析时需注意: 

1)时间复杂度强调的是函数执行的操作次数,这里的函数是指数学里面的函数,而不是C语法里的函数;

2)在实际中我们通常情况考量的是算法的最坏情况;

3)忽略掉常数;

4)

关注运行时间的增长趋势,关注函数式中增长最快的表达式,忽略系数;

    (比如:F(n)=10*n^3+50n+1000,其时间复杂度为O(n)=n^3)
5)递归算法的时间复杂度计算:递归总次数*每次递归次数.

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值