现代人工智能 (AI) 技术已达到先进水平,可以从简短的录音片段中生成极其逼真的音频消息。
这一新技术前沿也被网络犯罪分子利用,他们通过获取个人录音来训练神经网络来创建伪造的音频消息。这些消息的目的是欺骗受害者的朋友和家人,通常用于经济勒索或诈骗目的。
声音伪造程序需要对受害者的声音进行录音,持续大约30-40 秒,最好更长。通过一分钟多的录音,诈骗者可以创建一个模式,可以非常精确地复制任何所需的文本。
这种情况下的风险在于,通过耳朵很难区分真实的音频消息和经过适当训练的神经网络生成的音频消息。因此,专家建议直接联系所需的对话者并与他讨论对话细节,以避免陷入基于语音伪造的诈骗或网络钓鱼攻击。
除了使用神经网络创建欺骗性音频消息外,人工智能(AI)还广泛应用于网络犯罪领域,以开发日益复杂的工具和策略。例如:
1. 改进的网络钓鱼攻击:攻击者使用机器学习算法来个性化和优化网络钓鱼活动,使消息更有说服力且难以检测。人工智能可用于分析受害者数据并创建具有说服力和可信内容的有针对性的电子邮件。
2. 智能恶意软件:网络犯罪分子使用机器学习算法来开发可以适应和逃避传统安全措施的恶意软件。这些恶意软件可以分析它们运行的环境并相应地改变它们的行为,使它们更难以检测和删除。
3. 自动安全漏洞:人工智能可用于自动执行安全漏洞的规划、执行和隐藏阶段。攻击者可以使用机器学习算法来识别计算机系统中的漏洞并快速有效地利用它们。
4. 有针对性的攻击:在人工智能的帮助下,网络犯罪分子可以对个人或组织进行有针对性的攻击。人工智能可以分析大量数据来识别目标的特定漏洞并制定定制的攻击策略,以最大限度地提高攻击的有效性。
5. Deepfakes(深度伪造)和媒体操纵:人工智能用于创建看似真实的 Deepfakes、经过篡改的视频和图像。这种被操纵的媒体可被用来传播虚假信息,损害个人或组织的声誉,并影响公众舆论。
总之,人工智能为网络犯罪分子提供了进行更复杂、更有效且难以检测的攻击的新机会。组织必须认识到这种威胁并采取先进的安全措施来保护其敏感系统和数据,这一点至关重要。