工业网络安全领域的组织不断应对挑战,包括软件泄露、硬件漏洞、供应链妥协和零日漏洞利用。这些网络威胁通常源自敌对攻击者,包括国家资助的黑客,专门针对关键基础设施、制造设施和公用事业系统,对其运营连续性和数据保护构成重大风险。
这些与网络安全相关的挑战已经证明,企业必须投资于网络监控、威胁情报和员工培训等强有力的措施,以保护其关键资产并在面对不断变化的网络威胁时保持运营弹性。
为了应对这一充满挑战的环境,组织必须保持警惕,及时了解最新的全球法规、标准和合规要求。他们还需要增强工业环境中的供应链安全,采用安全设计原则,并利用生成式人工智能(人工智能)来强化工业环境中的安全措施。了解与实施这些策略相关的潜在优势和障碍对于有效保护关键资产至关重要。
供应链安全的作用一再被证明是现代工业运营的一个关键方面。随着互连性的增强,保护供应链对于保持工业流程的完整性和弹性比以往任何时候都更加重要。越来越多的组织被要求将设计安全/默认原则纳入其框架中,以建立针对新兴威胁的强大防御。这种主动的方法对于保护敏感数据和关键基础设施至关重要。
关键基础设施环境面临着采用生成式人工智能来增强工业安全的威胁。虽然这些技术提供了威胁检测和响应的自动化,有望提高效率和适应性,但它们的实施却面临着挑战。除了生成式人工智能的潜在好处外,在实施和集成方面也存在障碍,其中道德考虑和对技术人员的要求是需要仔细审查的关键因素。
研究人员透露,人工智能辅助攻击的主要进攻用例包括漏洞开发、社会工程和信息收集,而防御场景则涉及编写威胁狩猎代码、用简单语言表达逆向工程代码以及从威胁情报中提取见解报告。
广泛的研究集中在自动漏洞利用生成以及与人类漏洞发现的融合上,这需要专门的专业知识。现代人工智能工具现在接受基本的自然语言作为输入。因此,组织已经开始目睹在ChatGPT的帮助下生成的初始恶意软件实例。尽管迄今为止该功能尚未用于OT攻击,但其最终使用是不可避免的。
文章探讨管理工业网络安全中不断升级的地缘政治紧张局势、弥合人才多样性差距、探索工业首席信息安全官不断变化的责任,以及研究工业网络安全中持续风险管理的主动策略。
高管们对影响工业部门的全球法规、标准和合规性的最新发展进行了全面审查,评估这些措施是否充分解决了网络安全风险。
监管、标准和合规性永远不足以完成这项任务。这些活动的本质是纠正先前已知活动的风险,而对手的创新速度总是快于这些工具的跟上速度。法规、标准和合规性在网络安全领域创建一个可理解的底线(而不是一个未定义的坑)方面发挥着作用,但它们总是滞后于网络安全风险。需要传达期望的结果并激励创新和主动性来缩小差距。
最近影响工业领域的全球法规、标准和合规性的更新非常重要,并推出了许多举措来增强各个行业的网络安全。这些法规和标准是全球加强网络安全措施的一部分,以应对日益增多和复杂的威胁,特别是针对运营技术和关键基础设施的威胁。虽然这些措施显着增强了工业实体的网络安全态势,但其影响往往取决于实施保真度、与不断变化的威胁保持同步的持续更新以及每个部门的具体网络安全形势。“为了有效应对网络威胁的动态性质,有必要对这些框架进行持续评估和调整。最有效的法规是与行业机构和专家合作制定的,重点是解决现实世界的威胁,而不仅仅是增加另一层合规性。
在美国,这一领域几乎没有什么进展,期待白宫推动关键基础设施的报告要求。ICS/OT网络安全社区对工业网络中发生的攻击知之甚少。我们需要更多关于正在发生的事情的信息,这些数据可以帮助我们在ICS/OT风险评估期间进行更有效的讨论——从定性猜测游戏转向使用硬数据进行定量讨论。
供应链安全在工业环境中的关键作用,组织如何实施设计安全/默认原则以增强网络安全弹性。
工业设备的采购时间和预计使用寿命明显长于IT设备。设计安全/默认原则是迫切需要的,但即使今天普遍实施,它们也可能在10年内不会在现场设备中普及。如今,来自供应链的关键风险更加严重,包括供应商远程访问连接和Solarwinds或Havex(2014年针对ICS供应商)等供应链完整性攻击。克服常见弱点的最佳实践是已知的并已公布。组织应继续倡导在行业和客户中使用这些设计安全原则,利用团体的购买力,帮助使这些增强功能在工业产品中更加一致。
供应链安全在工业环境中发挥着至关重要的作用,确保设计、制造和交付过程的所有要素都受到保护,免受网络威胁。这对于严重依赖互联和数字系统的行业尤其重要,因为这些系统的漏洞可能会对整个供应链产生连锁反应。组织可以通过实施设计安全/默认原则来增强网络安全弹性。这涉及将网络安全整合到产品设计和开发流程中,以最大限度地减少最终用户的安全负担,并将责任转移给制造商。该策略需要创建一个以安全为中心的决策库,在考虑网络安全的情况下对系统进行建模,并在整个设计过程中做出明智的安全决策。
此外,透明度和问责制的重要性不容低估,需要行政层承诺执行这些原则。鼓励组织通过利用控制框架并在IT和OT环境中一致应用该框架来建立弹性。实现设计安全和默认安全的产品还需要重新评估遗留系统、为安全改进分配适当的预算,以及供应商和运营商之间的协作方法。
采用软件物料清单(SBOM)和漏洞利用交换(VEX)等框架对于透明地管理和传达整个供应链组件的安全状况至关重要。这些工具可帮助组织了解并减轻与其运营中使用的软件和硬件组件相关的风险,最终实现更安全的工业环境。
供应链安全在ICS/OT以及IT中非常重要,但也可能是最难防范(如果不是最难防范)的威胁类型之一。实施设计安全原则可以有所帮助,但并不被认为是灵丹妙药。运营实体需要实践安全网络架构、网络安全监控和事件响应等网络安全基础知识,以便在发生事件(无论是否来自供应链)时,组织能够及时响应,减少事件发生的可能性。对现场、生产能力和资产所有者的损害。
如何利用生成式人工智能来增强工业环境的安全性,探索与其集成相关的潜在优势和障碍。
生成式人工智能用于自动化任务、减少错误并帮助决策。在工业环境中,生成式人工智能的潜在好处包括确保正确遵循安全程序、提高产品输出质量,或帮助操作员和工程师深思熟虑和合乎逻辑地协商复杂或时间敏感的决策。
当前在工业环境中实施生成式人工智能面临的一些挑战包括与其训练相关的质量和准确性问题以及生成式人工智能本身的性质。从监管和法律的角度来看,这些不确定性可能会减缓或限制生成式人工智能在高风险功能和应用中的应用,直到达到较高的置信水平。
必须认识到它的潜在好处和它带来的挑战。生成式人工智能通过实时数据学习,显着改进了威胁检测和预防,从而可以采取主动安全措施并提高运营效率。然而,重要的是要承认相同的技术可用于开发复杂的网络攻击,从而造成组织需要谨慎管理的双重用途困境。
生成式人工智能在网络安全中的有效实施在很大程度上取决于数据的质量以及人工智能技术与现有系统的集成,这可能很复杂并且需要大量资源。因此,虽然生成式人工智能为推进网络安全提供了强大的工具,但它也需要采取平衡的方法来充分利用其能力并降低潜在风险。组织必须保持警惕并适应,既要利用这些进步,又要防范不断变化的威胁。
我们才刚刚开始探索GenAI如何帮助增强网络安全,因此令人兴奋的是,尽管它在今天已经非常有帮助和有效,但它只会变得更好。GenAI充当力量倍增器,使个人能够加速其工作职能和任务,无论是作为对SOC中的ICS/OT安全警报数据进行网络分析的安全分析师,还是设计站点的工程师,都可以使用GenAI来了解如何将网络安全控制纳入初始设计中。
我们必须认识到,GenAI也是攻击者的力量倍增器。并且攻击者总是领先于防御者。不幸的是GenAI不会改变这一点。