人工智能正日益渗透到生活的各个方面,这一趋势将继续影响我们的工作和个人体验。现实生活和数字生活的日益融合正在改变组织和个人的期望。
随着人工智能越来越深入商业战略,一个重大挑战也随之出现:技术所能实现的目标与用户期望之间的差距。与十年前五年技术路线图就已足够不同,如今快速发展的人工智能几乎立即使长期战略过时。
最紧迫的问题之一是对人工智能生成输出的信任。虽然人工智能工具有可能提高效率,但由于缺乏对人工智能生成输出的信任,其优势往往被削弱,导致耗时的人为监督 - 最终削弱预期的优势。
2025 年,我们将看到各组织开始纳入一定程度的监管监督,以帮助弥合这一信任鸿沟。通过采用负责任的人工智能使用的明确标准,包括当人工智能参与内容生成时强制披露,它将提高透明度并实现批判性分析,确保人工智能输出在被接受为事实之前得到适当的审查。
实施这样的流程将平衡人工智能的速度和便利性与必要的准确性检查,从而使人工智能成为工作场所更可靠的合作伙伴。
通过有效的数据管理削减成本和碳足迹
数据存储将继续成为组织的关键问题,这不仅是因为成本不断上升,还因为它对环境有重大影响。2020 年,数据中心约占全球能源消耗的 1%,这一数字与全球航空业相当。
随着社会对气候变化的认识日益加深,人们越来越意识到数据存储在碳排放中起着重要作用。这一点经常被忽视,因为与航空旅行等更明显的碳排放活动相比,数字存储感觉无形。
然而,这种转变已经发生,企业要求数据存储供应商提供更详细的报告,尤其是有关其运营对气候的影响。尽管人们的担忧日益增加,但数据生命周期管理是一个简单的解决方案。
许多企业都在存储不必要或多余的数据,这不仅增加了成本,还增加了环境足迹。通过积极管理数据的生命周期,企业可以减少存储量,从而降低财务和环境成本。
此外,不必要数据的积累也会影响人工智能的性能。随着过时或不相关数据量的增加,人工智能系统可能会变得不那么有效,从而引入不正确或不相关的信息。
通过优先考虑数据生命周期管理,组织可以确保其数据既最新又相关,从而从人工智能驱动的流程中获得更好的结果。
新隐私法及其对网络安全的影响
网络安全和隐私正变得越来越紧密地交织在一起,尤其是澳大利亚隐私法最近的变化。
以前,只有年营业额超过 5000 万美元的大型组织才受最严格的隐私法规的约束。现在,门槛已经降低到只有 15 名员工的企业,大大扩大了必须遵守的范围。
这一转变将对以前可能不需要在隐私合规方面投入大量资金的中小型企业产生深远影响。
随着消费者越来越意识到自己的权利,企业将面临数据保护和删除方面的更高期望。许多组织都没有做好管理这些要求的准备。
例如,虽然像 Optus 事件这样的大规模违规行为凸显了数据安全的重要性,但它们也暴露出许多公司保留客户数据的时间远远超过必要时间的事实。
消费者现在意识到,即使是几十年前的数据,仍然由公司存储,这增加了在网络攻击期间暴露的风险。
除了隐私问题,网络安全框架还需要领先于不断演变的威胁。网络犯罪分子正在利用日益复杂的人工智能工具来策划更大、更具破坏性的攻击。
因此,公司必须优先考虑网络安全实践中的创新。失败的后果现在更加严重,新版《隐私法》对违规行为施加了更严厉的处罚。
对于组织而言,这意味着网络安全不能是事后才想到的。现在比以往任何时候都更需要积极主动、不断发展的努力来保护敏感信息并避免代价高昂的后果。