二分查找之第一个大于小于等于 target 的值

欢迎浏览作者的GitHub

二分查找概述

条件:只能对已经排序好的列表进行查找。
需求:对搜索时间要求为O(logn)一般都是二分查找。
概述:通过对经典二分查找的修改,达到日常查找的各种需求,
如1、查找某个值 target,2、查找第一个大于 target 的值,3、查找第一个小于 target 的值,4、查找第一个大于等于 target的值,5、查找第一个 小于等于 target 的值。
对于经典的算法,只要进行简单的修改,即可满足多种情况
条件:left <= right
结束时:left 指向第一个不满足 if 条件中的值,
如if(array[mid] < target):就是第一个大于等于target的值
如if(array[mid] <= target):就是第一个大于target的值

1、查找某个值 target

注意:如果不存在这个值,结束时:left > right,且 left 的坐标为第一个大于 target 的值。

public int binarySearchOne() {
   int[] array = {0,1,2,3,4,5,6};
   int target = 3;
	int left = 0, right = array.length-1;
	while(left <= right) {
		int mid = (left+right)/2;
		if(array[mid] == target)
			return mid;
		if(array[mid] < target)
            left = mid + 1;
		else
		   right = mid - 1;
	}
	return -1;
}

2、查找第一个大于(大于等于) target 的值

注意:结束时:left > right,如果 target 即为最大值,则会产生数组越界,需要对 left 进行判断,不能直接返回。
修改:大于等于也很好修改,只需要将 if 里的判断条件改为 if(array[mid] < target) 即可。

public int binarySearchOne() {
   int[] array = {0,1,2,3,4,5,6};
   int target = 3;
	int left = 0, right = array.length-1;
	while(left <= right) {
	    int mid = (left + right)/2;
    //只修改了判断的条件,相当于将小于等于归为一类。
		if(array[mid] <= target)
            left = mid + 1;
		else
		   right = mid - 1;
	}
	return left;
}

3、查找第一个小于(小于等于) target 的值

注意:结束时:left > right,如果 target 即为最小值,则会产生数组越界,需要对 right 进行判断,不能直接返回。
修改:小于等于也很好修改,只需要将 if 里的判断条件改为 if(array[mid] > target) 即可。

public int binarySearchOne() {
   int[] array = {0,1,2,3,4,5,6};
   int target = 3;
	int left = 0, right = array.length-1;
	while(left <= right) {
	    int mid = (left + right)/2;
    //只修改了判断的条件,相当于将大于等于归为一类。
		if(array[mid] >=  target)
            right = mid - 1;
		else
		     left = mid + 1;
	}
	return right;
}

4、另一种写法,帮助你理解二分查找

算法:查找第一个大于 target 值的坐标。
注意:1、修改了循环条件:left < right,所以结束是 left == right。2、当遇到大于 target 值时,right = mid,保留当前可能的坐标。
好处:不会产生数组越界的下标,如果 target 即为最大值,则 left == right == array.length-1。否则一定会指向第一个大于 target 的坐标。

public int binarySearchTwo(int[] array, int left, int right,int target){
        while(left < right){ //修改了循环判断
            int mid = (left+right)/2;
            if(array[mid] <= target) //大于要保留
                left = mid + 1;
            else
                right = mid;
        }
        if(array[left] >= target) //最后结束时有left==right,如果一定存在,则不需要以下语句,直接返回即可。
            return left;
        return -1; //如果target即是最大值,则返回-1;

5、一个优秀的用二分查找寻找边界的方法

例题:查找左右边界,计算目标值的数量,使用了两次查找第一个最大值。

public int search(int[] nums, int target) {
    return binarySearch(nums, target + 0.5) - binarySearch(nums, target - 0.5);
}

private int binarySearch(int[] nums, double target) {
    int left = 0, right = nums.length - 1;
    while (left <= right) {
        int mid = (right + left) /2;
        if (nums[mid] < target) 
            left = mid + 1;
       else
            right = mid - 1;
        }
    return left;
}
评论 16
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值