/*
最大网络流的问题可以有如下的概括:
首先地图上有n个节点,有m条有向边
有这么一个节点,入度为0,定义为源节点,一般定义为1节点
有这么一个节点,出度为0,定义为汇节点,一般定义为n节点
所有的m条边都有两个属性,容量和流量,流量<=容量,没有距离这个属性
对于除了1号n号节点,所有节点的进入流量等同于流出流量
最大流问题:
问从源节点发出最大多大的流量,以至于不超过所有边的容量限制到达汇节点
打个比方:
从一个地方可以开出无限量卡车,可以通过多条路径到达目同一个的地,
但是对于道路由于与车道是有限的,定义所有道路的长度一样,车子的速度都是一样的,所以单位时间内通行的车辆是有限的(流量<=容量)
那么源点最多同时发出多少辆车才能使得每条道路都不超过饱和的情况下,让所有发出的车都到达汇点
*/
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn = 107;
int r[maxn][maxn];//r[i][j]表示从i到j的剩余流量
int pre[maxn];//前驱及诶单
int Q[maxn];//队列
bool Vis[maxn];
int n, m;
bool bfs(int s, int f)//通过bfs找到每一次可行的最短节点
{
memset(Vis, 0, sizeof(Vis));
int front = 1, rear = 1;
Q[rear++] = s;
Vis[s] = 1;
while (front != rear)
{
int tn = Q[front++];
if (tn == f)
{
return true;
}
for (int i = 1; i <= n; i++)
{
if (r[tn][i] && !Vis[i])
{
Vis[i] = 1;
pre[i] = tn;
Q[rear++] = i;
}
}
}
return false;
}
int EdmondsKarp(int s, int f)
{
int flow = 0;
pre[s] = -1;
while (bfs(s, f))
{
int d = -1;
int p = f, pp = pre[f];
while (pp != -1)
{
//统计路径上的最小容量
d = (d == -1) ? r[pp][p] : min(d, r[pp][p]);
p = pp;
pp = pre[pp];
}
p = f, pp = pre[f];
while (pp != -1)
{
//减去相应正向容量,加上相应反向容量
r[pp][p] -= d;
r[p][pp] += d;
p = pp;
pp = pre[pp];
}
flow += d;
}
return flow;
}
int main()
{
while (~scanf("%d%d", &n, &m))
{
int f, t, w;
for (int i = 0; i<m; i++)
{
scanf("%d%d%d", &f, &t, &w);
r[f][t] += w;
}
printf("%d\n", EdmondsKarp(1, n));
}
return 0;
}
网络流讲解和基本实现
最新推荐文章于 2021-11-16 17:36:41 发布