转载自:https://blog.csdn.net/JUNJUN_ZHAO/article/details/78564557
相关函数求导公式
先复习回顾下一些数学基础,帮助推导过程可以更好的理解。下面列举的公式都是,接下来的推导中会用到的,没有涉及到的公式,此处不再列举。
-
常数项求导
-
以 e 为底的指数求导公式
-
对数复合求导公式
-
-
幂函数复合求导公式
-
函数的和、差、积、商的求导法则
设
,都可导,则:
(1)
(2)
(3)
(4)
-
复合函数求导法则
-
设
而
且
及
都可导,则复合函数
的导数为
-
Logistic 回归的 Cost function 的推导过程:
-
之前采用的是梯度下降算法用来求函数的最小值。
好吧,来吧正式开始了,有了以上的数学求导基础,接下来就容易多了,公式嘛,当初上学时,老师常说的一句话:“背过,记住!”
Logistic回归的代价函数可以统一写成如下一个等式:
其中
:
下面开始我们的推导过程:如果要求
对某一个参数
的偏导数,则:
- 1.根据求导公式,可以先把常数项
提取出来,这样就只需要对求和符号内部的表达式求导,即:
-
(1)
其中 K(θ)’ 为:(为方便显示,先把右上角表示第i个
样本的上标去掉)
- 2.根据对数复合求导公式,
,
对 K(θ)’ 继续求导可得: -
(2)
之后 需要
对
现在 根据上面提到的
- 幂函数复合求导公式
-
- 以 e 为底的指数求导公式
-
先对
求导:
根据上面的已知公
式:
依据上面的商求导公式可得:
-
将 (3) (4) 代入 (2) 中 ,可
得:
-
推导结果:
结论:Logistic Regression 的目的是 求解一组最佳拟合参数 θ 。这个求解的过程是由最优化算法完成的。
参考文献:
[1] 玄天妙地 .第三周:逻辑回归代价函数求导过程 [OL]