How Good Are Large Language Models for Course Recommendation in MOOCs?

在这里插入图片描述

主要内容

  1. 研究背景:课程推荐系统在教育领域愈发重要,但传统推荐模型存在泛化性不足、需特定数据训练等问题,深度学习模型存在可解释性差的缺点。大语言模型(LLMs)在自然语言处理领域表现出色,在推荐系统中的应用逐渐受到关注,但在大规模开放在线课程(MOOCs)课程推荐方面的研究较少。
  2. 相关工作:介绍了课程推荐的多种方法,如基于内容的方法、矩阵分解技术、关联规则挖掘等,以及LLMs在推荐系统中的应用,包括直接使用基于提示的技术和作为组件增强传统推荐模型。
  3. 方法:探索两种将LLMs应用于课程推荐的方法。一是直接使用预训练的LLMs,基于提示生成推荐;二是微调LLMs,利用学生交互数据丰富其知识库后生成推荐。
  4. 评估:使用来自中国最大的MOOC网站之一学堂在线的MOOCCubeX数据集,选取多种传统推荐模型作为基线。采用准确率、覆盖率、新颖性等多种指标评估,将数据集按80%训练、20%测试划分,并随机抽取1000条记录评估。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值