每日一题:最长连续递增子序列长度

文章介绍了一种用于找出数组中最长连续递增子序列的算法,其主要思想是遍历数组,维护两个变量来跟踪当前和最大长度。当遇到递增元素时,增加当前长度;否则,重置当前长度并更新最大长度。算法的时间复杂度为O(n),适用于处理大规模数据。
摘要由CSDN通过智能技术生成

解题思路:

  1. 初始化变量 max_lencurr_len 为 0,分别表示当前最长连续递增子序列的长度和当前正在计算的连续递增子序列的长度。
  2. 遍历给定的数组,对于每个元素:
  • 如果当前元素大于前一个元素,则将 curr_len 加一。
  • 否则,将 curr_len 重置为 1,重新开始计算连续递增子序列的长度。
  • 更新 max_len 为当前 curr_lenmax_len 的较大值。
  1. 返回 max_len
    代码实现及注释:
def find_length_of_lcis(nums):
    # 初始化变量
    max_len = 0
    curr_len = 0
    
    # 遍历数组
    for i in range(len(nums)):
        if i == 0 or nums[i] > nums[i-1]:
            # 当前元素大于前一个元素,增加当前连续递增子序列的长度
            curr_len += 1
        else:
            # 当前元素小于等于前一个元素,重置当前连续递增子序列的长度为 1
            curr_len = 1
        
        # 更新最大长度
        max_len = max(max_len, curr_len)
    
    return max_len

# 测试
nums = [1, 3, 5, 4, 7]
result = find_length_of_lcis(nums)
print(result)  # 输出: 3,因为最长连续递增子序列为 [1, 3, 5]

nums = [2, 2, 2, 2, 2]
result = find_length_of_lcis(nums)
print(result)  # 输出: 1,因为最长连续递增子序列为 [2]

该算法的时间复杂度为 O(n),其中 n 是数组的长度。在算法的执行过程中,我们只需要遍历一次数组,对于每个元素,可以在常数时间内进行比较和更新操作。因此,该算法的时间复杂度是线性的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值