青蛙过河

一只青蛙想要过河。 假定河流被等分为 x 个单元格,并且在每一个单元格内都有可能放有一石子(也有可能没有)。 青蛙可以跳上石头,但是不可以跳入水中。

给定石子的位置列表(用单元格序号升序表示), 请判定青蛙能否成功过河(即能否在最后一步跳至最后一个石子上)。 开始时, 青蛙默认已站在第一个石子上,并可以假定它第一步只能跳跃一个单位(即只能从单元格1跳至单元格2)。

如果青蛙上一步跳跃了 k 个单位,那么它接下来的跳跃距离只能选择为 k - 1、k 或 k + 1个单位。 另请注意,青蛙只能向前方(终点的方向)跳跃。

请注意:

石子的数量 ≥ 2 且 < 1100;
每一个石子的位置序号都是一个非负整数,且其 < 231;
第一个石子的位置永远是0。
示例 1:

[0,1,3,5,6,8,12,17]

总共有8个石子。
第一个石子处于序号为0的单元格的位置, 第二个石子处于序号为1的单元格的位置,
第三个石子在序号为3的单元格的位置, 以此定义整个数组...
最后一个石子处于序号为17的单元格的位置。

返回 true。即青蛙可以成功过河,按照如下方案跳跃: 
跳1个单位到第2块石子, 然后跳2个单位到第3块石子, 接着 
跳2个单位到第4块石子, 然后跳3个单位到第6块石子, 
跳4个单位到第7块石子, 最后,跳5个单位到第8个石子(即最后一块石子)。
示例 2:

[0,1,2,3,4,8,9,11]

返回 false。青蛙没有办法过河。 
这是因为第5和第6个石子之间的间距太大,没有可选的方案供青蛙跳跃过去。

题解思路:

用一个hashmap  key 作为 石头的位置    Value 是一个集合  记录能到达当前石头位置的所有路径的k值。

一直动态规划  到最后  如果最后的的集合不为空  那么是可以过河的。

循环每个石头  

然后遍历上一个石头所有的key 

利用所有  K-1 k  K+1 能所到达的所有的石头  然后将这个key 存入对应的石头位置

 

判断最后一个集合

class Solution {
    public boolean canCross(int[] stones) {
        // key  vaule  0 0  1  
        HashMap<Integer,Set<Integer>>  map =new HashMap<>();
        for(int i=0;i<stones.length;i++){
            map.put(stones[i],new HashSet<Integer>());
        }
     map.get(0).add(0);

        for(int i=0;i<stones.length;i++){
            for(int k:map.get(stones[i])){
                for(int step=k-1;step<=k+1;step++){
                    if(step>0&&map.containsKey(stones[i]+step)){
                        map.get(stones[i]+step).add(step);
                    }
                }
            }
        }
        

        return map.get(stones[stones.length-1]).size()>0;

    }
}

 

©️2020 CSDN 皮肤主题: 岁月 设计师:pinMode 返回首页