一、查找算法概述
1、常见的4种查找算法
①顺序(线性)查找;
②二分查找/折半查找;
③插值查找;
④斐波那契查找(黄金分割点查找);
二、顺序(线性)查找
1、说明
对顺序无要求;
2、代码实现
package com.zb.ds.search;
//顺序查找
public class SeqSearch {
public static void main(String[] args) {
int[] arr = {1,5,2,67,42,84,263,632,53};
int search = search(arr, 84);
if(search!=-1){
System.out.println("84的下标是:" + search);
}else {
System.out.println("84没找到!");
}
}
//找到一个就返回
public static int search(int[] arr,int value){
//线性查找是逐个比对,发现有相同的,就直接返回
for (int i = 0; i < arr.length; i++) {
if(arr[i]==value){
return i;
}
}
return -1;
}
}
3、运行结果
84的下标是:5
三、二分查找
1、概述
(必须有序)
思路分析:
参考之前笔记:https://blog.csdn.net/qq_29689343/article/details/108665947
2、代码演示(递归)
代码实现:
package com.zb.ds.search;
//二分查找:必须是有序的
public class BinarySearch {
public static void main(String[] args) {
int[] arr = {12,15,17,24,27,35,37,44,54,67,263};
int search = search(arr, 0, arr.length - 1, 24);
if(search!=-1){
System.out.println("24的下标是:" + search);
}else {
System.out.println("24没找到!");
}
}
/**
* 二分查找
* @param arr 目标数组
* @param left 左边下标
* @param right 右边下标
* @param findVal 要找的值
* @return 下标或者-1
*/
public static int search(int[] arr,int left,int right,int findVal){
//始终没找到
if(left>right){
return -1;
}
int mid = (left + right) / 2;
int midValue = arr[mid];
if(findVal>midValue){//向右递归
return search(arr,mid+1,right,findVal);
}else if(findVal<midValue){//向左递归
return search(arr,left,mid-1,findVal);
}else {//找到了
return mid;
}
}
}
运行结果:
24的下标是:3
3、思考题
问题:
二分法找到所有目标数值的索引?意思是如果是{1,213,213,213,5235,6547,58824},要找到所有213的下标;
我的思路:
使用普通二维数组查找到213,再往前往后不停地找,直到找到不少自己的数,停下来,将找到的每一个下标记录下来;
代码实现:
package com.zb.ds.search;
import java.util.ArrayList;
import java.util.List;
//二分查找:必须是有序的
public class BinarySearch {
public static void main(String[] args) {
int[] arr = {12,15,17,24,24,24,24,24,27,35,37,44,54,67,263};
int search = search(arr, 0, arr.length - 1, 24);
if(search!=-1){
System.out.println("24的下标是:" + search);
}else {
System.out.println("24没找到!");
}
System.out.println("24的所有下标是:" + searchAll(arr,search,24));
}
public static List<Integer> searchAll(int[] arr, int index, int findVal){
List<Integer> list = new ArrayList<>();
list.add(index);
//往前找
for (int i = index-1; i > -1; i--) {
if(arr[i]==findVal){
list.add(i);
}else {
break;
}
}
//往后找
for (int i = index+1; i < arr.length-1; i++) {
if(arr[i]==findVal){
list.add(i);
}else {
break;
}
}
return list;
}
/**
* 二分查找
* @param arr 目标数组
* @param left 左边下标
* @param right 右边下标
* @param findVal 要找的值
* @return 下标或者-1
*/
public static int search(int[] arr,int left,int right,int findVal){
//始终没找到
if(left>right){
return -1;
}
int mid = (left + right) / 2;
int midValue = arr[mid];
if(findVal>midValue){//向右递归
return search(arr,mid+1,right,findVal);
}else if(findVal<midValue){//向左递归
return search(arr,left,mid-1,findVal);
}else {//找到了
return mid;
}
}
}
运行结果:
24的下标是:7
24的所有下标是:[7, 6, 5, 4, 3]
四、插值查找
(必须有序)
1、原理介绍
①插值查找算法类似于二分查找,不同的是插值查找每次从自适应mid处开始查找(对二分查找的优化);
②将折半查找中的求mid 索引的公式 , low 表示左边索引left, high表示右边索引right. key 就是前面我们讲的 findVal
改成:
③int mid = low + (high - low) * (key - arr[low]) / (arr[high] - arr[low]) ;/*插值索引*/ 对应前面的代码公式: int mid = left + (right – left) * (findVal – arr[left]) / (arr[right] – arr[left]);
2、代码演示
代码实现:
package com.zb.ds.search;
//插值查找
public class InsertSearch {
public static void main(String[] args) {
int[] arr = new int[100];
for (int i = 0,j=1; i < 100; i++,j+=4) {
arr[i] = i + j;
}
int search = search(arr, 0, arr.length - 1, 76);
if(search!=-1){
System.out.println("76的下标是:" + search);
}else {
System.out.println("76没找到!");
}
}
public static int search(int[] arr,int left,int right,int findVal){
//始终没找到
if(left>right || findVal<arr[0] || findVal>arr[arr.length-1]){
return -1;
}
//求出mid
int mid = left + (right - left) * (findVal - arr[left]) / (arr[right] - arr[left]);
System.out.println("mid:" + mid);
int midValue = arr[mid];
if(findVal>midValue){//向右递归
return search(arr,mid+1,right,findVal);
}else if(findVal<midValue){//向左递归
return search(arr,left,mid-1,findVal);
}else {//找到了
return mid;
}
}
}
运行结果(1次找到):
mid:15
76的下标是:15
五、斐波那契查找
(必须有序)
1、基本介绍
斐波那契查找,又叫黄金分割法;
黄金分割点是指把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比,取其前三位数字的近似值是0.618。由于按此比例设计的造型十分美丽,因此称为黄金分割,也称为中外比。这是一个神奇的数字,会带来意想不到的效果;
斐波那契数列 {1, 1, 2, 3, 5, 8, 13, 21, 34, 55 } 发现斐波那契数列的两个相邻数 的比例,无限接近 黄金分割值0.618;
2、原理
斐波那契查找原理与前两种相似,仅仅 改变了中间结点(mid)的位置,mid不 再是中间或插值得到,而是位于黄金分 割点附近,即mid=low+F(k-1)-1 (F代表斐波那契数列),如下图所示:
对F(k-1)-1的理解:
①由斐波那契数列 F[k]=F[k-1]+F[k-2] 的性质,可以得到 (F[k]-1)=(F[k-1]-1)+(F[k-2]-1)+1 。该式说明:只要顺序表的长度为F[k]-1,则可以将该表分成长度为F[k-1]-1和F[k-2]-1的两段,即如上图所示。从而中间位置为mid=low+F(k-1)-1;
②类似的,每一子段也可以用相同的方式分割;
③但顺序表长度n不一定刚好等于F[k]-1,所以需要将原来的顺序表长度n增加至F[k]-1。这里的k值只要能使得F[k]-1恰好大于或等于n即可,由以下代码得到,顺序表长度增加后,新增的位置(从n+1到F[k]-1位置),都赋为n位置的值即可。
3、代码演示
代码实现:
(里面的注释是老师讲解的,但不一定对)
package com.zb.ds.search;
import java.util.Arrays;
//斐波那契查找:必须有序
public class FibonacciSearch {
public static int maxSize = 20;
public static void main(String[] args) {
int[] arr = {1,8,10,89,1000,1234};
System.out.println(search(arr,1234));
}
//因为后面我们mid=low+F(k-1)-1,需要使用到斐波那契数列,因此我们需要先获取到一个斐波那契数列
public static int[] fibonacci() {
int[] f = new int[maxSize];
f[0] = 1;
f[1] = 1;
for (int i = 2; i < maxSize; i++) {
f[i] = f[i - 1] + f[i - 2];
}
return f;
}
/**
* 斐波那契查找算法:使用非递归的方式编写算法
*
* @param arr 数组
* @param key 要查找的值
* @return 查到的下标
*/
public static int search(int[] arr, int key) {
int low = 0;
int height = arr.length - 1;
int k = 0;//表示斐波那契分割数值的下标
int mid = 0; //存放mid
int[] f = fibonacci();//获取到斐波那契数列
//获取斐波那契分割数值的下标
while (height > f[k] - 1) {
k++;
}
//因为f[k]可能大于数组的长度,因此我们需要使用Arrays类构造一个新的数组,并指向arr
//从arr拷贝f[k]个元素,不足的部分会使用0补充
int[] temp = Arrays.copyOf(arr, f[k]);
//实际上需要使用arr数组最后的数填充temp
for (int i = height + 1; i < temp.length - 1; i++) {
temp[i] = arr[height];
}
//使用while来循环处理,找掉我们的数key
while (low <= height) {//只要满足此条件,就可以找
mid = low + f[k - 1] - 1;
if (key < temp[mid]) {
height = mid - 1;
//为什么是k--
//1、全部元素等于前面的元素,加上后面的元素
//2、f[k]=f[k-1]+f[k-2]
//因为请前面有f[k-1]个元素,随意我们可以继续拆分f[k-1]=f[k-2]+f[k-3]
//即在f[k-1]的前面继续查找k--
//即下次循环mid=f[k-1-1]-1
k--;
}else if(key>temp[mid]){//说明我们应该向数组的右边查找
low = mid + 1;
//为什么是k-2
//1、全部元素等于前面的元素,加上后面的元素
//2、f[k]=f[k-1]+f[k-2]
//3、因为后面我们有f[k-2],所以可以继续拆分f[k-1]=f[k-3]+f[k-4]
//4、即在f[k-2]的前面机型查找k-=2
//5、即下次循环mid=f[k-1-2]-1
k-=2;
}else {//找到了
//需要注意的是返回的是哪个下标,返回小的那个
return Math.min(mid, height);
}
}
return -1;//没找到
}
}
运行结果:
5