【Java数据结构和算法】013-查找:常见查找算法、顺序(线性)查找、二分查找、插值查找*、斐波那契查找*

一、查找算法概述

1、常见的4种查找算法

①顺序(线性)查找;

②二分查找/折半查找;

③插值查找;

④斐波那契查找(黄金分割点查找);

 

二、顺序(线性)查找

1、说明

对顺序无要求;

 

2、代码实现

package com.zb.ds.search;

//顺序查找
public class SeqSearch {
    public static void main(String[] args) {
        int[] arr = {1,5,2,67,42,84,263,632,53};
        int search = search(arr, 84);
        if(search!=-1){
            System.out.println("84的下标是:" + search);
        }else {
            System.out.println("84没找到!");
        }
    }
    //找到一个就返回
    public static int search(int[] arr,int value){
        //线性查找是逐个比对,发现有相同的,就直接返回
        for (int i = 0; i < arr.length; i++) {
            if(arr[i]==value){
                return i;
            }
        }
        return -1;
    }
}

 

3、运行结果

84的下标是:5

 

三、二分查找

1、概述

(必须有序)

思路分析:

参考之前笔记:https://blog.csdn.net/qq_29689343/article/details/108665947

 

2、代码演示(递归)

代码实现:

package com.zb.ds.search;

//二分查找:必须是有序的
public class BinarySearch {
    public static void main(String[] args) {
        int[] arr = {12,15,17,24,27,35,37,44,54,67,263};
        int search = search(arr, 0, arr.length - 1, 24);
        if(search!=-1){
            System.out.println("24的下标是:" + search);
        }else {
            System.out.println("24没找到!");
        }
    }
    /**
     * 二分查找
     * @param arr 目标数组
     * @param left 左边下标
     * @param right 右边下标
     * @param findVal 要找的值
     * @return 下标或者-1
     */
    public static int search(int[] arr,int left,int right,int findVal){
        //始终没找到
        if(left>right){
            return -1;
        }
        int mid = (left + right) / 2;
        int midValue = arr[mid];
        if(findVal>midValue){//向右递归
            return search(arr,mid+1,right,findVal);
        }else if(findVal<midValue){//向左递归
            return search(arr,left,mid-1,findVal);
        }else {//找到了
            return mid;
        }
    }
}

运行结果:

24的下标是:3

 

3、思考题

问题:

二分法找到所有目标数值的索引?意思是如果是{1,213,213,213,5235,6547,58824},要找到所有213的下标;

 

我的思路:

使用普通二维数组查找到213,再往前往后不停地找,直到找到不少自己的数,停下来,将找到的每一个下标记录下来;

 

代码实现:

package com.zb.ds.search;

import java.util.ArrayList;
import java.util.List;

//二分查找:必须是有序的
public class BinarySearch {
    public static void main(String[] args) {
        int[] arr = {12,15,17,24,24,24,24,24,27,35,37,44,54,67,263};
        int search = search(arr, 0, arr.length - 1, 24);
        if(search!=-1){
            System.out.println("24的下标是:" + search);
        }else {
            System.out.println("24没找到!");
        }
        System.out.println("24的所有下标是:" + searchAll(arr,search,24));
    }
    public static List<Integer> searchAll(int[] arr, int index, int findVal){
        List<Integer> list = new ArrayList<>();
        list.add(index);
        //往前找
        for (int i = index-1; i > -1; i--) {
            if(arr[i]==findVal){
                list.add(i);
            }else {
                break;
            }
        }
        //往后找
        for (int i = index+1; i < arr.length-1; i++) {
            if(arr[i]==findVal){
                list.add(i);
            }else {
                break;
            }
        }
        return list;
    }
    /**
     * 二分查找
     * @param arr 目标数组
     * @param left 左边下标
     * @param right 右边下标
     * @param findVal 要找的值
     * @return 下标或者-1
     */
    public static int search(int[] arr,int left,int right,int findVal){
        //始终没找到
        if(left>right){
            return -1;
        }
        int mid = (left + right) / 2;
        int midValue = arr[mid];
        if(findVal>midValue){//向右递归
            return search(arr,mid+1,right,findVal);
        }else if(findVal<midValue){//向左递归
            return search(arr,left,mid-1,findVal);
        }else {//找到了
            return mid;
        }
    }
}

运行结果:

24的下标是:7
24的所有下标是:[7, 6, 5, 4, 3]

 

四、插值查找

(必须有序)

1、原理介绍

①插值查找算法类似于二分查找,不同的是插值查找每次从自适应mid处开始查找(对二分查找的优化);

②将折半查找中的求mid 索引的公式 , low 表示左边索引left, high表示右边索引right. key 就是前面我们讲的  findVal

改成:

③int mid = low + (high - low) * (key - arr[low]) / (arr[high] - arr[low])  ;/*插值索引*/ 对应前面的代码公式: int mid = left + (right – left) * (findVal – arr[left]) / (arr[right] – arr[left]);

 

2、代码演示

代码实现:

package com.zb.ds.search;

//插值查找
public class InsertSearch {
    public static void main(String[] args) {
        int[] arr = new int[100];
        for (int i = 0,j=1; i < 100; i++,j+=4) {
            arr[i] = i + j;
        }
        int search = search(arr, 0, arr.length - 1, 76);
        if(search!=-1){
            System.out.println("76的下标是:" + search);
        }else {
            System.out.println("76没找到!");
        }
    }
    public static int search(int[] arr,int left,int right,int findVal){
        //始终没找到
        if(left>right || findVal<arr[0] || findVal>arr[arr.length-1]){
            return -1;
        }
        //求出mid
        int mid = left + (right - left) * (findVal - arr[left]) / (arr[right] - arr[left]);
        System.out.println("mid:" + mid);
        int midValue = arr[mid];
        if(findVal>midValue){//向右递归
            return search(arr,mid+1,right,findVal);
        }else if(findVal<midValue){//向左递归
            return search(arr,left,mid-1,findVal);
        }else {//找到了
            return mid;
        }
    }
}

运行结果(1次找到):

mid:15
76的下标是:15

 

五、斐波那契查找

(必须有序)

1、基本介绍

斐波那契查找,又叫黄金分割法;

黄金分割点是指把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比,取其前三位数字的近似值是0.618。由于按此比例设计的造型十分美丽,因此称为黄金分割,也称为中外比。这是一个神奇的数字,会带来意想不到的效果;

斐波那契数列 {1, 1, 2, 3, 5, 8, 13, 21, 34, 55 } 发现斐波那契数列的两个相邻数 的比例,无限接近 黄金分割值0.618;

 

2、原理

斐波那契查找原理与前两种相似,仅仅 改变了中间结点(mid)的位置,mid不 再是中间或插值得到,而是位于黄金分 割点附近,即mid=low+F(k-1)-1 (F代表斐波那契数列),如下图所示:

对F(k-1)-1的理解:

①由斐波那契数列 F[k]=F[k-1]+F[k-2] 的性质,可以得到 (F[k]-1)=(F[k-1]-1)+(F[k-2]-1)+1 。该式说明:只要顺序表的长度为F[k]-1,则可以将该表分成长度为F[k-1]-1和F[k-2]-1的两段,即如上图所示。从而中间位置为mid=low+F(k-1)-1;

②类似的,每一子段也可以用相同的方式分割;

③但顺序表长度n不一定刚好等于F[k]-1,所以需要将原来的顺序表长度n增加至F[k]-1。这里的k值只要能使得F[k]-1恰好大于或等于n即可,由以下代码得到,顺序表长度增加后,新增的位置(从n+1到F[k]-1位置),都赋为n位置的值即可。

 

3、代码演示

代码实现:

(里面的注释是老师讲解的,但不一定对)

package com.zb.ds.search;

import java.util.Arrays;

//斐波那契查找:必须有序
public class FibonacciSearch {
    public static int maxSize = 20;

    public static void main(String[] args) {
        int[] arr = {1,8,10,89,1000,1234};
        System.out.println(search(arr,1234));
    }

    //因为后面我们mid=low+F(k-1)-1,需要使用到斐波那契数列,因此我们需要先获取到一个斐波那契数列
    public static int[] fibonacci() {
        int[] f = new int[maxSize];
        f[0] = 1;
        f[1] = 1;
        for (int i = 2; i < maxSize; i++) {
            f[i] = f[i - 1] + f[i - 2];
        }
        return f;
    }

    /**
     * 斐波那契查找算法:使用非递归的方式编写算法
     *
     * @param arr 数组
     * @param key 要查找的值
     * @return 查到的下标
     */
    public static int search(int[] arr, int key) {
        int low = 0;
        int height = arr.length - 1;
        int k = 0;//表示斐波那契分割数值的下标
        int mid = 0; //存放mid
        int[] f = fibonacci();//获取到斐波那契数列
        //获取斐波那契分割数值的下标
        while (height > f[k] - 1) {
            k++;
        }
        //因为f[k]可能大于数组的长度,因此我们需要使用Arrays类构造一个新的数组,并指向arr
        //从arr拷贝f[k]个元素,不足的部分会使用0补充
        int[] temp = Arrays.copyOf(arr, f[k]);
        //实际上需要使用arr数组最后的数填充temp
        for (int i = height + 1; i < temp.length - 1; i++) {
            temp[i] = arr[height];
        }
        //使用while来循环处理,找掉我们的数key
        while (low <= height) {//只要满足此条件,就可以找
            mid = low + f[k - 1] - 1;
            if (key < temp[mid]) {
                height = mid - 1;
                //为什么是k--
                //1、全部元素等于前面的元素,加上后面的元素
                //2、f[k]=f[k-1]+f[k-2]
                //因为请前面有f[k-1]个元素,随意我们可以继续拆分f[k-1]=f[k-2]+f[k-3]
                //即在f[k-1]的前面继续查找k--
                //即下次循环mid=f[k-1-1]-1
                k--;
            }else if(key>temp[mid]){//说明我们应该向数组的右边查找
                low = mid + 1;
                //为什么是k-2
                //1、全部元素等于前面的元素,加上后面的元素
                //2、f[k]=f[k-1]+f[k-2]
                //3、因为后面我们有f[k-2],所以可以继续拆分f[k-1]=f[k-3]+f[k-4]
                //4、即在f[k-2]的前面机型查找k-=2
                //5、即下次循环mid=f[k-1-2]-1
                k-=2;
            }else {//找到了
                //需要注意的是返回的是哪个下标,返回小的那个
                return Math.min(mid, height);
            }
        }
        return -1;//没找到
    }
}

运行结果:

5

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值