AI测试自动化脚本:解析结果txt文件字段并保存至excel文件

本文档记录了一种自动化方法,通过读取5万个AI测试精度结果文件的最后一条数据,将其与标准基准数据(bench表)对比,快速判断测试通过情况,提升了工作效率。涉及的技术包括文件操作、字符串匹配、txt文件读取和Excel数据查找。
摘要由CSDN通过智能技术生成
背景:ai测试精度结果文件有5w行,跑测试的时候,需要逐个文件打开读最后一行的数据,拷贝放在结果表中,比较耗时,经常做回归测试,抽了点时间把这个读写数据的过程自动化了,同时和bench表对应网络的标准bench数据进行对比,得到是否pass的最终测试结果,一并写入了结果表中,实测已经可用,特记录一下,以备后用

解决的技术问题包括:
1、获取指定路径下的文件名称 
2、匹配字符串 
3、txt文件读指定行、匹配字符串 
4、根据单元格内容查找excel中单元格所在的行号
************************************代码分隔符**************************
# coding:utf-8
import xlwt
import xlrd
import pandas as pd
from os import listdir
'''说明:
1、功能说明:用于自动从精度测试结果txt文件中获取精度、从精度bench表中获取bench、计算精度gap、计算精度测试结果,并写入到结果表result.xls中;适用于c++接口01_getresult_c++.py
2、使用说明:
    a.将bench和本文件拷贝至本地,并运行本文件,本bench表目前只包含pytorch网络bench,其他网络需根据bench表格式修改为
    被测网络bench
    b.可能需要修改的参数:
        bench.xlsx文件内容
        path:此目录为结果文件txt文件所在的路径,也可以是某个指定路径,如E:\\automation\\demo
        result_file:结果文件的路径及文件名,根据实际情况填写,如E:\\automation\\demo\\result.xls
'''
#定义benchfile名称、结果文件名称
path="." #此目录为结果文件txt文件所在的路径,也可以是某个指定路径,如E:\\automation\\demo
bench_file ='bench.xlsx' #指定bench文件的名称及路径,可以是绝对路径,如E:\\automation\\demo\\bench.xlsx
workbook = xlrd.open_workbook(bench_file)
sheet1 = workbook.sheet_by_index(0)

#定义网络模型集合和quant方式集合
models = ["inceptionV3", "resnet18", "resnet34", "resnet50", "resnet101", "resnet152", "squeezenet1_0",
          "squeezenet1_1", "densenet121", "densenet169", "densenet201", "densenet161", "shufflenet_v2_x1_0",
          "shufflenet_v2_x0_5", "mobilenet_v2", "resnext50_32x4d", "resnext101_32x8d", "wide_resnet50_2",
          "wide_resnet101_2", "gluon_resnet50_v1b", "gluon_resnet50_v1c", "gluon_resnet50_v1d", "mnasnet0_5",
          "mnasnet1_0"]
quants = ["max", "sigma", "percentile", "kl_divergence"]

##初始化:定义结果表表明及表头:网络、quant类型、bench、精度结果、精度bench、判断结果
workbook = xlwt.Workbook(encoding='utf-8', style_compression=0)
sheet = workbook.add_sheet('test', cell_overwrite_ok=True)
result_file = "result.xls"  # 结果文件的路径及文件名,根据实际情况填写,如E:\\automation\\demo\\result.xls
sheet.write(0, 0, 'no')
sheet.write(0, 1, 'net')
sheet.write(0, 2, 'quant')
sheet.write(0, 3, 'Top1_bench')
sheet.write(0, 4, 'Top5_bench')
sheet.write(0, 5, 'Top1')
sheet.write(0, 6, 'Top5')
sheet.write(0, 7, 'Top1_gap')
sheet.write(0, 8, 'Top5_gap')
sheet.write(0, 9, 'test_result')

#根据文件名称和单元格内容,获取单元格所在的行号
def find_row(num_value,file_name):
    demo_df = pd.read_excel(file_name)
    for indexs in demo_df.index:
        for i in range(len(demo_df.loc[indexs].values)):
            if (str(demo_df.loc[indexs].values[i]) == num_value):
                row = str(indexs+2).rstrip('L')
                return row

# 获取指定目录下(不包括子目录)的所有txt格式文件
def get_file_name(filepath):
    #print(listdir(filepath))
    txtfile = []
    for f in listdir(filepath):
        if ".txt" in f:
            txtfile.append(f)
    return txtfile

txt_file = get_file_name(path) #获取所有txt文件名
i = 1
#处理每个txt文件,得到精度值,并计算差值,写入到结果表中
for file in txt_file:
    fname = file.split('.')[0]
    print(fname)
    #net = fname.split('_')[1]
    #quant = fname.split('_')[3]
    with open(file, 'r') as f:  # 打开文件
        # 向结果表种写入网络名称、quant方式
        sheet.write(i, 0, i)
        #sheet.write(i, 1, net)
        #sheet.write(i, 2, quant)

        # 获取精度测试结果,获取最后一行的精度值,并写入值结果表中,适用c++接口
        lines = f.readlines()  # 读取所有行
        first_line = lines[0]  # 取第一行
        last_line = lines[-1]  # 取最后一行
        top1 = last_line.split(' ')[-2].split(":")[1].replace('Prec', '')
        top5 = last_line.split(' ')[-1].split(":")[-1]
        sheet.write(i, 5, top1)
        sheet.write(i, 6, top5)

        # 通过txt文件名称与网络名称字典匹配,得出网络名称
        m = 0
        for model in models:
            # print("aaa")
            # print( "aaa"  + model)
            if model in fname:
                net = model
                # print("bbb"+net)
            m = m + 1
        sheet.write(i, 1, net)

        # 通过txt文件名称与网络名称字典匹配,获取quant方式
        j = 0
        for q in quants:
            if q in fname:
                quant = q
            j = j + 1
        sheet.write(i, 2, quant)

        # 通过网络名称,从bench表中获取该网络的bench,并写入到结果表中
        row_num = int(find_row(net, bench_file)) -1
        print(row_num)
        print(sheet1.cell(row_num, 3))
        print(sheet1.cell(row_num, 4))
        top1_bench = sheet1.cell(row_num, 3).value
        top5_bench = sheet1.cell(row_num, 4).value
        sheet.write(i, 3, top1_bench)
        sheet.write(i, 4, top5_bench)

        #计算bench_gap、是否通过,并写入结果表
        top1_gap = top1_bench - float(top1)
        top5_gap = top5_bench - float(top5)
        sheet.write(i, 7, top1_gap)
        sheet.write(i, 8, top5_gap)
        if top1_gap <= 1 and top1_gap <= 1:
            result = "pass"
        else:
            result = "fail"
        sheet.write(i, 9, result)
    i = i+1
    workbook.save(result_file)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值