简介
这里记录下开放世界目标检测论文 【Towards Open World Object Detection】的实验和代码细节。
数据集基础
文章中给出的数据集数量分布情况,逐个Task来分析。该实验将VOC 2007和COCO 2017数据集进行了集成,其实仅用COCO 2017也可,但本领域开篇之作用了此方式,后续将会把这个设置作为基础操作。
VOC 2007数据集的类别信息:
数据集包含 训练集:5011 张,测试集:4952张,共9963张,20个类。
[aeroplane,bicycle.bird,boat,bottle,bus,car,cat,chair,cow,
diningtable,dog,horse,motorbike,person,pottedplant,
sheep,sofa,train,tvmonitor]
CoCo2017数据集包括train(118287张)、val(5000张)、test(40670张)
目标检测类别80种。
[‘person’, ‘bicycle’, ‘car’, ‘motorcycle’, ‘airplane’, ‘bus’, ‘train’, ‘truck’, ‘boat’, ‘traffic light’, ‘fire hydrant’, ‘stop sign’, ‘parking meter’, ‘bench’, ‘bird’, ‘cat’, ‘dog’, ‘horse’, ‘sheep’, ‘cow’, ‘elephant’, ‘bear’, ‘zebra’, ‘giraffe’, ‘backpack’, ‘umbrella’, ‘handbag’, ‘tie’, ‘suitcase’, ‘frisbee’, ‘skis’, ‘snowboard’, ‘sports ball’, ‘kite’, ‘baseball bat’, ‘baseball glove’, ‘skateboard’, ‘surfboard’, ‘tennis racket’, ‘bottle’, ‘wine glass’, ‘cup’, ‘fork’, ‘knife’, ‘spoon’, ‘bowl’, ‘banana’, ‘apple’, ‘sandwich’, ‘orange’, ‘broccoli’, ‘carrot’, ‘hot dog’, ‘pizza’, ‘donut’, ‘cake’, ‘chair’, ‘couch’, ‘potted plant’, ‘bed’, ‘dining table’, ‘toilet’, ‘tv’, ‘laptop’, ‘mouse’, ‘remote’, ‘keyboard’, ‘cell phone’, ‘microwave’, ‘oven’, ‘toaster’, ‘sink’, ‘refrigerator’, ‘book’, ‘clock’, ‘vase’, ‘scissors’, ‘teddy bear’, ‘hair drier’, ‘toothbrush’]
大类12个,分别为
[‘appliance’, ‘food’, ‘indoor’, ‘accessory’, ‘electronic’, ‘furniture’, ‘vehicle’, ‘sports’, ‘animal’, ‘kitchen’, ‘person’, ‘outdoor’]
COCO数据集包含VOC数据集的各个类别。
实验中的数据集
实验中将数据集划分了4个子任务,可与代码中给出的datasets\OWOD_imagesets文件夹下的内容比对。每个任务所用数据集分别介绍如下:
Task 1包含的类别为VOC中的20种类别:
[aeroplane,bicycle.bird,boat,bottle,bus,car,cat,chair,cow,
diningtable,dog,horse,motorbike,person,pottedplant,
sheep,sofa,train,tvmonitor]
Task 1 训练集【t1_train.txt】中将包含VOC和COCO同类别实例的图像作为整体,训练集16551张图像,测试集【t1_known_test.txt】4952为VOC2007的测试集图像。
t1_train_with_unk.txt:相当于在【t1_train.txt】基础上增加了 1500张图像,即18051张,图像中包含未知类数据(相当于这些图像中没有Task1这20类的实例,这个具体要看代码确定)。
Task 2包含的类别为COCO中Outdoor等(如图)大类的的20种小类别:
T2_CLASS_NAMES = [
"truck", "traffic light", "fire hydrant", "stop sign", "parking meter",
"bench", "elephant", "bear", "zebra", "giraffe",
"backpack", "umbrella", "handbag", "tie", "suitcase",
"microwave", "oven", "toaster", "sink", "refrigerator"]训练集【t2_train.txt】45520,测试集1914【t2_