剑指Offer 最小的K个数

80 篇文章 13 订阅
8 篇文章 0 订阅

输入n个整数,找出其中最小的K个数。例如输入4,5,1,6,2,7,3,8这8个数字,则最小的4个数字是1,2,3,4,。

方法一:基于快排的Partition,时间复杂度O(n)

解析:基于数组的第k个数字来调整,则使得比第k个数字小的所有数字都位于数组的左边,比第个数字大的所有数字都位于数组的右边。这样调整之后,位于数组中左边的k个数字就是最小的k个数字(这k个数字不一定是排序的).

class Solution {
public:
    int partition(vector<int> &vec,int low,int high){
        if(vec.size() == 0)
            return 0;
        int temp = vec[low],i=low,j=high;
        while(i<j){
            while(i<j && vec[j]>temp)
                j--;
            if(i<j){
                vec[i] = vec[j];
                i++;
            }
            while(i<j && vec[i]<temp)
                i++;
            if(i<j){
                vec[j] = vec[i];
                j--;
            }
        }
        vec[i] = temp;
        return i;
    }
    vector<int> GetLeastNumbers_Solution(vector<int> input, int k) {
        vector<int> ans;
        if(input.size()==0 || k==0 || k>input.size())
            return ans;
        int low = 0,high = input.size()-1;
        int index = partition(input,low,high);
        while(index != k-1){
            if(index > k-1)
                high = index-1;
            else
                low = index+1;
            index = partition(input,low,high);
        }
        for(int i=0;i<k;i++)
            ans.push_back(input[i]);
        return ans;
    }
};

方法二堆排:时间复杂度O(nlogk)

基于“先整体排序,然后取前k个元素”的思路引申:需要的是前k小的数,没必要把整个数组都排好序。这样一来,时间复杂度可以降到O(nLogk)。利用最大堆排,只不过在这里用的是最小堆算法

class Solution {
public:
    void heapAdjust(vector<int> &vec,int low,int high){
        int i=low,j=2*i;
        int temp = vec[i];
        while(j<=high){
            while(j<high && vec[j]>vec[j+1])
                j++;
            if(vec[j] < temp){
                vec[i] = vec[j];
                i=j;
                j=2*i;
            }else
                break;
        }
        vec[i] = temp;
    }
    vector<int> GetLeastNumbers_Solution(vector<int> input, int k) {
        vector<int> ans;
        if(input.size()==0 || k <=0 || k>input.size())
            return ans;
        input.insert(input.begin(),0);//将下标变为从1开始
        
        int len = input.size()-1;
        for(int i=len/2;i>=1;i--)
            heapAdjust(input,i,len);
        for(int i=len,j=0;i>=1;i--,j++){
            if(j==k)
                break;
            swap(input[1],input[i]);
            ans.push_back(input[i]);
            heapAdjust(input,1,i-1);
        }
        return ans;
    }
};

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值