题目
给定一个 n 个元素有序的(升序)整型数组 nums 和一个目标值 target ,写一个函数搜索 nums 中的 target,如果目标值存在返回下标,否则返回 -1。
示例 1:
输入: nums = [-1,0,3,5,9,12], target = 9
输出: 4
解释: 9 出现在 nums 中并且下标为 4
示例 2:
输入: nums = [-1,0,3,5,9,12], target = 2
输出: -1
解释: 2 不存在 nums 中因此返回 -1
先上自己不优雅的实现代码,勉强通过了LeetCode,并时间击败78.85%
public int search(int[] nums, int target) {
if (nums.length == 0) { //①
return -1;
}
int left = 0;
int right = nums.length - 1;
int mid = (left+right) / 2;//②
while (left < right) {
if (target > nums[mid]) {
left = mid+1;
mid = left+right) / 2;
} else if (target < nums[mid]) {
right = mid;//③
mid = (left+right) / 2;
} else {
return mid;
}
}
if(nums[mid] == target) {//④
return mid;
}
return -1;
}
代码中的①②③④都是可以改进的
- ①处的数组可能为null,需要加上
if(num == null){
return -1;
}
- ②处因为right+left过大可能overflow,
==mid =(left+right)/2==改进为==mid = left + (right-left)/2==,而且重复代码过多,可以优化 - ③处因为已经确认了后面的查询空间在mid左边了,所以==right=mid-1==比较合适
- ④不应该在循环外额外判断,在循环内就应该把判断逻辑处理完整
改进后的代码
public static int search(int[] nums, int target) {
if (nums == null || nums.length == 0) {
return -1;
}
int left = 0;
int right = nums.length - 1;
while (left <= right) {
int mid = left + (right - left) / 2;
if (target > nums[mid]) {
left = mid + 1;
} else if (target < nums[mid]) {
right = mid - 1;
} else {
return mid;
}
}
return -1;
}
额外总结
如何识别二分查找?
二分查找是一种在每次比较之后将查找空间一分为二的算法。每次需要查找集合中的索引或元素时,都应该考虑二分查找。如果集合是无序的,我们可以总是在应用二分查找之前先对其进行排序。
实现思路
二分查找一般由三个主要部分组成:
1. 预处理 —— 如果集合未排序,则进行排序
2. 二分查找 —— 使用循环或递归在每次比较后将查找空间划分为两半。
3. 后处理 —— 在剩余空间中确定可行的候选者。