大模型学习笔记05——大模型的数据
对于大模型来说,训练数据就是“原始文本”
大语言模型背后的数据
- 大型语言模型是在"原始文本"上进行训练的。为了实现高度的能力(如语言和世界知识),这些文本应涵盖广泛的领域、类型、语言等。
- 数据来源:网络和大公司私有数据
- 丰富的网络数据中存在的问题
- 大规模数据在全球人口中的代表性仍然不均衡。
- 网络数据过多地代表了来自发达国家的年轻用户。
- GPT-2的训练数据基于Reddit,根据皮尤互联网研究的2016年调查,美国Reddit用户中有67%是男性,64%的年龄在18到29岁之间。
- 维基百科的编者中只有8.8-15%是女性。
- 网络上的骚扰可能会让某些人群(如跨性别者、神经发育不同的人)产生排斥感。
- 过滤"不良词汇"可能进一步边缘化某些人群(如LGBT+)。 因此,我们的结论是:理解和记录用于训练大型语言模型的数据集的组成是至关重要的。
- Common Crawl:从网络上爬取数据,并免费给公众提供快照
- WebText:从Common Crawl选取,创建WebText的过程包括:抓取至少获得3个赞的所有外链,过滤掉维基百科以便在基于维基百科的基准测试中进行评估,最终得到了40GB的文本。openai训练GPT-2数据,未公开
- OpenWebText:按照WebText的方式复现
- Colossal Clean Crawled Corpus(C4):训练T5模型,从2019年4月的Common Crawl快照(1.4万亿个标记)开始,移除了“bad words”,移除了代码(“{”),通过langdetect过滤掉了非英语文本,最终得到了806GB的文本(1560亿个标记)。
- Benchmark的数据污染问题:对于大型语言模型,训练数据和基准数据都源自互联网