大模型学习笔记04——新的模型架构

本文探讨了两种新颖的模型架构:混合专家模型,通过分组专家并利用门控机制实现高效并行;以及基于检索的模型,通过输入驱动从数据库检索相关信息进行预测。这两种方法旨在提高模型效率和适应性。
摘要由CSDN通过智能技术生成

大模型学习笔记04——新的模型架构

1、混合专家模型

核心思想:创建一组专家,每个输入只激活一小部分专家

混合专家模型方法:

在这里插入图片描述

注意

  1. 通过门控控制使用不同种类和数量的专家
  2. 所有专家的概率分布和为1,可以取其中概率较大的几个专家,而忽略概率较小的专家
  3. 需要确保所有专家都能被输入使用,如果只有一个专家活跃既是浪费,其他专家也得不到梯度改善
  4. 混合专家非常有利于并行,不同专家放置在不同的机器上,在中心节点上计算门控函数

2、基于检索的模型

核心思想:根据输入,从数据库中检索到相关的部分,通过检索到的信息对输入进行预测

更多详细内容见:添加链接描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值