- 博客(3061)
- 收藏
- 关注
原创 嵌入式※~MCU~LWIP网络协议栈移植(各种网卡)
这是一个基于MCU的lwip的移植, 会使用各种网卡, 因为要给mcu赋予http等功能 还有加密通道更厉害点还想vpn呢 ,所以要用lwip啦~哈哈 调试过程中 还发现破仿真器不行 导致老报错 用jlinkv9 就好了...也可以直接看我原文 这里篇幅有限~~ 51c嵌入式~LWIP移植各网卡 -都不行 , 直接卡死了..... 不知道是不是这款MCU太差了....
2024-08-12 22:18:36 611
原创 ipsec~strongSwan
但是我这里是在使用VPP的vpp_sswan插件安装的,改了默认配置文件地址,在/etc中。最后排查发现,可能就是差了一个sudo systemctl restart strongswan.service,所以还是把这个服务给启动吧,然后上述解决步骤应该就不需要了。使用二进制包也行,就是用sudo apt install strongswan strongswan-swanctl,还有没有需要安装的我不晓得。按照那两个一开始的参考说的,现在使用的都是swanctl了,而不使用starter的方式了。
2024-06-12 15:15:58 2595 1
原创 嵌入式※~各种の器件对接
这里总结各种器件对接whaosoft aiot http://143ai.com 各种资料少, 来交流技术~ 64104075
2024-06-03 19:39:57 295 1
原创 嘿嘿 我又开始aiot了
嘿嘿 我又开始 ai 和 iot了whaosoft 的 ai iotwww.143ai.com研究物联网 机器视觉 室内定位 测量设备等
2022-05-17 15:08:03 856 1
原创 大模型~合集-xx59
然而,FrugalGPT 接受了 GPT-J 的正确答案,避免了昂贵的 LLM 的使用,提高了整体性能。例如,在图 5 (a) 所示的第二个例子中,FrugalGPT 发现 GPT-J 的生成可能不可靠,于是转向链中的第二个 LLM J1-L,以找到正确的答案。来自斯坦福大学的研究者回顾了使用 LLM API(例如 GPT-4,ChatGPT,J1-Jumbo)所需的成本,并发现这些模型具有不同的定价,费用可能相差两个数量级,特别是在大量查询和文本上使用 LLM 可能更昂贵。策略 2:LLM 近似。
2024-08-18 11:12:34 347
原创 大模型~合集-xx68
本综述深入探讨了在 LLMs 时代下文本水印技术的发展现状,全面总结了其算法设计与实现、评估角度与方法、在版权保护、学术诚信和假新闻检测等领域的应用,以及该领域的挑战和未来方向。作者热切欢迎学术界和行业专家就大模型时代下文本水印的研究议题进行广泛的交流和讨论。希望这不仅仅是一份综述论文,更是一个激发深入思考与广泛交流的契机。Taobao 天皓智联 whaosoft aiot http://143ai.com
2024-08-17 14:07:17 765
原创 大模型~合集-xx67
OPT 的大小从 125M 到 175B 参数,达到 GPT-3 量级,并且对所有的实验代码做了完整的开源!OPT-175B 的性能做到了和 GPT-3 相当,但是只需要 1/7 carbon footprint 的训练代价。完整开源的 GPT-3 复刻版本文介绍来自 Meta AI 的 OPT 模型,它所基于的背景是 GPT-3 这个强大的语言模型。whaosoft aiot http://143ai.com 实验结果如下图5所示,可以看到 OPT-175B 在所有任务上都显着优于无监督 Reddit 2
2024-08-17 13:50:17 778
原创 大模型~合集-xx66
为Vicuna-7B设计的攻击,可以迁移到其他羊驼家族模型身上,比如Pythia、Falcon、Guanaco,甚至GPT-3.5、GPT-4和PaLM-2……也就是,通过利用token级的梯度来识别一组可能的单token替换,然后评估集合中这些候选的替换损失,并选择最小的一个。此外,GCG方法生成的攻击,还可以很好地迁移到其他的LLM上,即使它们使用完全不同的token来表征相同的文本。团队表示,这一结果首次证明了,自动生成的通用「越狱」攻击,能够在各种类型的LLM上都产生可靠的迁移。whaosoft
2024-08-17 13:42:36 820
原创 大模型~合集-xx69
我们借鉴了NLP领域常用的“预训练+领域数据微调”的思路,把公开的各偏好数据集作为“通用偏好数据”对RM先进行预训练,然后在把我们收集的少量“定制化偏好数据”做二阶段微调,通过这种方法提高了定制化偏好数据的sample efficienc。还是蛮主观的一件事,然后将生成的回复样本和金标准回复进行组合,得到新的APO偏好数据,用来更新RM。针对偏好数据中的噪声问题(不同的标注人员的标注结果可能不一致,不同的数据集的偏好也可能冲突),我们提出了通过多目标优化的方法让Reward Model学到不同数据集的。
2024-08-17 13:39:48 818
原创 视觉~合集xxs4
Taobao 开发板商城 whaosoftaiothttp://143ai.com天皓智联 FKD 框架的核心部分包含了两个阶段,如下图:(1)软标签(soft label)的生成和存储;(2)使用软标签(soft label)进行模型训练。如图所示,上半部分展示了软标签的生成过程,作者通过输入多个 crops 进入预训练好的 teacher 来产生需要的软标签向量,同时作者还保存了:(1)每个 crop 对应的坐标和(2)是否翻转的 Boolean 值。
2024-08-16 13:07:06 772
原创 视觉~合集xxs3
关于知识蒸馏的工作: Masked Generative Distillation。该方法在图像分类和密集预测的实验中,其学生模型均获得大幅提升 文章链接:https://arxiv.org/abs/2205.01529代码链接:https://github.com/yzd-v/MGD知识蒸馏主要可以分为logit蒸馏和feature蒸馏。其中feature蒸馏具有更好的拓展性,已经在很多视觉任务中得到了应用。但由于不同任务的模型结构差异,许多feature蒸馏方法是针对某个特定任务设计的。之前的知识蒸馏方
2024-08-16 13:05:06 537
原创 扩散模型~合集5
本文全面研究图像编辑前沿方法,并根据技术路线精炼地划分为 3 个大类、14 个子类,通过表格列明每个方法的类型、条件、可执行任务等信息。在这份调查报告中,我们详尽概述了使用扩散模型进行图像编辑的现有方法,涵盖了该领域的理论和实践方面。此外,我们还特别关注图像的inpainting和outpainting,并探讨了早期的传统上下文驱动方法和当前的多模态条件方法,对其方法论进行了全面分析。打勾表示可以做的任务。这些模型背后的核心理念是学习如何逆转逐渐向图像中添加噪声的过程,从而从复杂的分布中生成高质量的样本。
2024-08-16 10:05:38 1001
原创 扩散模型~合集6
TFMQ-DM在平均4或8 bit权重,8或32 bit激活时,所有评价指标均超过Q-Diffusion,PTQD等已有最先进方法,且在大部分场景下,该方案使用4bit权重量化超越了已有技术在8-bit权重甚至于全精度权重的模型的性能。具体来说,旨在对应于时间步长。然而,虽然现有的指标无法充分评估生成图像的语义一致性以及物体细节,该团队提出的方法产生了更高质量的图像(见后文),具有更真实的细节,更好地展示了语义信息。TFMQ-DM 提供的显著量化精度,有助于在资源受限的情况下进行实际部署。Taobao
2024-08-16 10:03:55 832
原创 大模型~合集-xx9
方法的核心假设是,推理过程中的序列化步骤是 CoT 提示中最关键的组成部分,能够使语言模型在生成回复内容时应用更多的逻辑进行推理。基于零样本 CoT 和 Auto-CoT 的启发,研究者期望 CoT 的过程成为一种标准化的模式,并通过在 prompt 部分限制 CoT 思维的方向来获得正确的结果。对于算术类型的问题,即使其中一个 prompt 结果出现偏差,对推理过程中思维链的影响也是微乎其微的,因此研究者认为在解决算术类型的问题时,大语言模型对提示中思维模式链的学习要多于单一计算。研究者做了以下尝试。
2024-08-16 09:44:22 835
原创 自动驾驶合集53
最后,受到Panoptic SegFormer算法模型的启发,我们采用了一个基于掩码的策略将最终掩码解码器层的预测掩码结果与语义占用头的背景结果合并,以获得3D体素化场景的占用、语义和实例物体序号信息。为了验证我们提出的算法模型PanoSSC对于语义场景补全任务的有效性,我们在SemanticKITTI数据集上与其它的算法模型进行了对比实验,相关的实验结果如下所示。此外,为了验证我们提出算法模型对于全景3D场景重建任务的有效性,我们将提出的算法模型与其它的算法模型进行了实验对比,相关的结果如下所示。
2024-08-16 09:39:57 1015 1
原创 自动驾驶合集42
你的在线高精地图真的可靠么?MapBench:全面分析所有SOTA算法(三星&悉尼大学)驾驶系统通常依赖高精(HD)地图来获取精确的环境信息,这对于规划和导航至关重要。尽管当前的高精地图构建器在理想条件下表现良好,但它们对现实世界挑战的韧性,例如恶劣天气和传感器故障,尚不完全清楚,这引发了安全问题。MapBench是首个旨在评估高精地图构建方法对各种传感器损坏情况的鲁棒性的全面基准测试。基准测试涵盖了来自Camera和激光雷达传感器的总共29种损坏类型。对31个高精地图构建器的广泛评估揭示了现有方法在恶劣天
2024-08-16 09:37:22 1031
原创 视觉~合集15
最佳学生论文:实现3DGS新突破,任意尺度无锯齿渲染!本文介绍了Mip-Splatting,一种改进的三维高斯抛雪球技术,通过引入三维平滑过滤器和二维Mip过滤器,实现了任意比例下的无锯齿渲染。三维平滑过滤器限制高斯基元的最大频率以适应训练图像的采样约束,而二维 Mip过滤器通过近似盒子过滤器来模拟物理成像过程。论文链接:https://arxiv.org/pdf/2311.164931 摘要最近,三维高斯抛雪球技术展示了令人印象深刻的新颖视图合成结果,达到了高保真和高效率。然而,当改变采样率时,例如通过改
2024-08-16 09:35:33 960
原创 视觉~合集xxs13
根据维基百科,数字图像中对象颜色的 R、G 和 B 分量都与照射到对象的光量相关,因此,这些分量之间的图像描述使得对象辨别变得困难。图像分割为图像中的对象创建像素级掩模,这使我们能够更全面、更细致地了解对象。分割图像的目标是将图像的表示改变为更有意义且更易于分析的东西。我们将以 k = 3 进行聚类,因为如果你看上面的图像,它有 3 种颜色:绿色的草地和森林、蓝色的大海和绿蓝色的海岸。现在,让我们探索一种使用 K-Means 聚类算法和 OpenCV 读取图像并对图像的不同区域进行聚类的方法。whaosof
2024-08-15 10:37:01 938
原创 视觉~合集xxs11
相比之下,FCN 由单个编码器-解码器结构组成,其中编码器是一系列卷积层和最大池化层,用于对输入图像进行下采样并提取特征,解码器是一系列卷积层和上采样层,用于对特征图进行上采样并生成最终的分割图。最终的分割图是通过对收缩路径中的特征图进行上采样并将其与扩展路径中输入图像的特征相结合而创建的,扩展路径是一系列卷积层和上采样层。总体而言,UNet 架构的工作原理是使用收缩路径从输入图像中提取特征,使用扩展路径和跳跃连接将这些特征与输入图像的特征组合起来,并使用扩展路径中的卷积层生成最终的分割图 whaosoft
2024-08-15 10:34:41 970
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人