激流检测和定位的可解释深度学习

新西兰国立水与大气研究所的研究人员提出了一种新的人工智能算法,可在图像和视频中识别和定位离岸流,该算法无需预定义边界框,提高了检测准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

离岸流是一种强大的局部水流,沿着海岸移动并远离海岸。最近的研究表明,离岸流造成的溺水仍然是海滩安全的主要威胁。在决定指定巡逻区域的位置时,识别离岸流对于救生员来说很重要。当救生员不在巡逻时,公众在决定去哪里游泳时也需要信息。

在这里,新西兰国立水与大气研究所 (NIWA)的研究人员提出了一种人工智能 (AI) 算法,该算法既可以识别图像/视频中是否存在裂流,也可以定位裂流发生的位置。

虽然 AI 在裂流电流检测和定位方面取得了一些重大进展,但缺乏研究确保 AI 算法可以很好地推广到各种沿海环境和海洋条件。该研究使用了一种可解释的 AI 方法,即梯度加权类激活图 (Grad-CAM),这是一种用于非晶裂口电流检测的新方法。训练数据/图像多种多样,包含各种环境设置中的裂流,确保模型泛化。一个开放获取的离岸流空中目录被用于模型训练。

在这里,还通过应用各种随机图像变换(例如,透视、旋转变换和加性噪声)来增强航拍图像,这通过泛化显著提高了模型性能。为了考虑到不同的环境设置,一个包含雾、阴影和雨的综合生成的训练集也被添加到 rip 电流图像中,从而将训练数据集增加了大约 10 倍。可解释的 AI 显著提高了无界裂流检测的准确性,当对来自倾斜角度的冲浪相机的独立视频进行验证时,它可以在大约 89% 的时间内正确分类和定位裂流。新颖性还在于无需预定义边界框即可捕获非晶裂口电流结构的某些形状特征的能力,因此可以使用无人机等远程技术。

该研究以「Interpretable Deep Learning Applied to Rip Current Detection and Localization」为题,于 2022 年 11 月 18 日发布在《Remote Sensing》。

激流被定义为沿岸和远离海岸移动并穿过破碎带的强大的局部水流。由于质量

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值