本综述深入探讨了大型语言模型的资源高效化问题。
近年来,大型语言模型(LLM)如 OpenAI 的 GPT-3 在人工智能领域取得了显著进展。这些模型,具有庞大的参数量(例如 1750 亿个参数),在复杂度和能力上实现了飞跃。随着 LLM 的发展趋势朝着不断增大的模型规模前进,这些模型在从智能聊天机器人到复杂数据分析,乃至于多领域研究中的应用越发广泛。然而,模型规模的指数级增长带来了巨大的资源需求,尤其是在计算、能源和内存等方面。
这些资源的巨大需求使得训练或部署这样庞大的模型成本高昂,尤其是在资源受限的环境(如学术实验室或医疗领域)中更是如此。此外,由于训练这些模型需要大量的 GPU 使用,因此它们的环境影响也成为日益关注的问题,尤其是在电力消耗和碳排放方面。如何在资源有限的环境中有效部署和应用这些模型成为了一个紧迫的问题。
来自 Emory University,University of Virginia 和 Penn State University 的研究团队通过全面梳理和分析了当前 LLM 领域的最新研究,系统地总结了提高模型资源效率的多种技术,并对未来的研究方向进行了深入探讨。这些工作不仅涵盖了 LLM 的全生命周期(预训练、微调、提示等),还包括了多种资源优化方法的分类和比较,以及对评估指标和数据集的标准化。本综述旨在为学者和实践者提供一个清晰的指导框架,帮助他们在资源有限的环境中有效地开发和部署大型语言模型。
论文链接:https://arxiv.org/pdf/2401.00625
一、引言
资源高效的 LLM 需要理解 LLM 生命周期中涉及的关键资源。在这项综述中,作者将这些资源系统地归类为五个主要类别:计算、内存、能源、资金和通信成本。高效性在这里被定义为投入资源与产出的比例,一个更高效的系统能够在消耗更少资源的同时产生相同水平的输出。因此,一个资源高效的 LLM 旨在在所有这些维度上最大化性能和能力,同时最小化资源开销,从而实现更可持续和更易获取的 AI 解决方案。
资源效率在 LLM 中是一个至关重要且复杂的领域,它需要创新的解决方案来应对显著的挑战。这些挑战一共包括五个层面:
-
模型层面:自回归生成的低并行性导致了显著的延迟问题,这在大型模型或长输入长度下尤其突出,影响训练和推理的高效处理。此外,自注意力层的二次复杂性随着输入长度的增加而显著增加,成为计算瓶颈。
-
理论层面:缩放法则和收益递减指出,随着模型变大,每增加一个参数所带来的性能提升在减小。此外,理论上关于机器学习中的泛化和过拟合也对 LLM 的资源效率提出了挑战。
-
系统层面:考虑到 LLM 的庞大模型大小和训练数据集,将它们全部放入单个 GPU/TPU 的内存中变得不可行。因此,为 LLM 优化训练过程的复杂系统设计变得至关重要。
-
伦理层面:许多 LLM 依赖于大型且专有的训练数据集,这限制了提高效率的某些技术的应用。此外,许多先进的 LLM 是封闭源的,这意味着在缺乏对模型内部工作的深入了解的情况下提高效率变得更加复杂。
-
评价指标层面:LLM 的多样化和复杂性使得开发全面的资源效率评价指标面临独特挑战。与优化较小模型的一两种资源相比,LLM 呈现出多目标问题,要求在多个关键资源上同时进行优化。
为了应对上述挑战,该综述提供了以下贡献:
-
资源高效 LLM 技术的全面概述:对增强 LLM 资源效率的技术进行了全面的概述,涵盖了 LLM 整个生命周期的各种方法和策略。
-
技术按资源类型的系统分类和分类法:建立了一个系统的分类和分类法,根据它们优化的资源类型对资源高效的 LLM 技术进行组织。
-
评估指标和数据集的标准化:提出了一套专门用于评估 LLM 资源效率的评估指标和数据集的标准化。
-
识别差距和未来研究方向:对当前在创造资源高效 LLM 方面的瓶颈和未解决的挑战进行了深入探讨,并指出了未来研究的潜在途径。
二、资源高效大型语言模型的全新分类法
该综述提出了一个全面的分类法,以系统地理解和优化大型语言模型(LLM)中涉及的关键资源。这个分类法包括五个关键领域:计算、内存、能源、资金和网络通信,每个领域都针对资源利用的不同方面: