AI4Science

这篇文章讲述了AI4Science从早期的争议到如今在多个科学领域取得的显著进展,包括大型语言模型在实验规划、化学材料、生物医学等方面的应用,以及跨学科合作的重要性。组织者强调了开源和AI4Science在科学发现中的角色,以及未来面临的挑战和期望。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

AI4Science还是伪命题吗?两年后workshop组织者重新审视AI4Science

2021年,一群热血青年提出了要把AI4Science(AI for Science)带入机器学习顶会NeurIPS。

什么?AI4Science是一门学科吗?是不是靠着AI蹭热点?各种质疑声接踵而来。

这些质疑和不解也反映在了第一届AI4Science workshop的较为平淡的群众参与度上。

时过境迁,两年的时间见证了DeepMind基于AlphaFold建立Isomorphic Lab,微软建立AI4Science Initiative, 以及国内深势科技,AISI等大力推动AI4Science建设的企业,学术机构的不断发展壮大。

2023年8月,Al4Science workshop组织者们还在《自然》杂志上发表了一篇综述文章,总结了过去几年里Al4Science在科学发现流程上的进展,并为未来指了指路。

去年12月NeurIPS,AI4Science workshop收到超过200篇投稿和上千人次的参与,俨然成为了NeurIPS最大的workshop之一。看到这些数字,似乎已经没有人再说AI4Science是伪命题了。

近日,Al4Science workshop组织者们发表一篇博客。提到了为什么要强调AI4Science?总结了AI4Science在2023年取得的进展,涵盖了从化学、生物、计算机科学/数学科学、物理、地球科学、神经科学到医学的各个领域。最后,组织者们送上了他们对AI4Science在2024年发展的期望。

Blog 地址:https://medium.com/@AI_for_Science/ai-for-science-in-2023-a-community-primer-d2c2db37e9a7

为什么要强调AI4Science?

随着AI在多个学科各放异彩,另一个问题接踵而至,为什么要强调AI4Science,大家分别做AI在子领域的应用,比如AI4Drug和AI4Materials,不就好了吗?组织者们指出了这样几个原因。

  • 跨领域的协同作用:AI4Science的诞生,不仅促进了AI和各种科学学科之间的协同关系,还在AI和科学的不同子领域间搭建了桥梁。这种跨学科的互动,就像给科学研究加了一把火,不断在不同领域催生交融的解决方案。

  • 知识的层级组织:就像学科的不同分类一样,AI4Science代表了一个更高阶的领域,它包含并超越了专门的子领域。AI4Science提供了一个宏观视角,将AI在特定科学领域的更专

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值