AI4Science还是伪命题吗?两年后workshop组织者重新审视AI4Science
2021年,一群热血青年提出了要把AI4Science(AI for Science)带入机器学习顶会NeurIPS。
什么?AI4Science是一门学科吗?是不是靠着AI蹭热点?各种质疑声接踵而来。
这些质疑和不解也反映在了第一届AI4Science workshop的较为平淡的群众参与度上。
时过境迁,两年的时间见证了DeepMind基于AlphaFold建立Isomorphic Lab,微软建立AI4Science Initiative, 以及国内深势科技,AISI等大力推动AI4Science建设的企业,学术机构的不断发展壮大。
2023年8月,Al4Science workshop组织者们还在《自然》杂志上发表了一篇综述文章,总结了过去几年里Al4Science在科学发现流程上的进展,并为未来指了指路。
去年12月NeurIPS,AI4Science workshop收到超过200篇投稿和上千人次的参与,俨然成为了NeurIPS最大的workshop之一。看到这些数字,似乎已经没有人再说AI4Science是伪命题了。
近日,Al4Science workshop组织者们发表一篇博客。提到了为什么要强调AI4Science?总结了AI4Science在2023年取得的进展,涵盖了从化学、生物、计算机科学/数学科学、物理、地球科学、神经科学到医学的各个领域。最后,组织者们送上了他们对AI4Science在2024年发展的期望。
Blog 地址:https://medium.com/@AI_for_Science/ai-for-science-in-2023-a-community-primer-d2c2db37e9a7
为什么要强调AI4Science?
随着AI在多个学科各放异彩,另一个问题接踵而至,为什么要强调AI4Science,大家分别做AI在子领域的应用,比如AI4Drug和AI4Materials,不就好了吗?组织者们指出了这样几个原因。
-
跨领域的协同作用:AI4Science的诞生,不仅促进了AI和各种科学学科之间的协同关系,还在AI和科学的不同子领域间搭建了桥梁。这种跨学科的互动,就像给科学研究加了一把火,不断在不同领域催生交融的解决方案。
-
知识的层级组织:就像学科的不同分类一样,AI4Science代表了一个更高阶的领域,它包含并超越了专门的子领域。AI4Science提供了一个宏观视角,将AI在特定科学领域的更专