遥感影像~

遥感影像资源推荐:解锁开源数据集与强大GPU算力的无限可能

遥感影像处理识别是对利用遥感技术获取的图像数据进行识别和分析的过程。这种技术使用从航空器、卫星或其他遥感平台获取的图像数据,经过识别和分析后广泛应用在多种场景中,包括但不限于以下几个方面:

  1. 在农业活动中,可以使用遥感图像数据来监测农田中的作物生长和病害情况,以便及时采取措施;以及识别不同的作物类型或土地利用方式。

  2. 在机场场景中,可以用于监测和管理机场活动。通过识别和追踪飞机、地勤车辆、行李车、乘客等,有助于确保机场运行的顺利和安全。

  3. 在城市规划中,可以用来识别和监测建筑物、道路、交通标志等基础设施。

  4. 在环境监测中,可以对土地利用、森林覆盖、水体分布等进行分类分析,从而了解特定区域的自然环境状况;

  5. 在字幕生成过程中,通过分析和处理遥感影像,生成相应的文字描述,用于解释图像中的内容或者提供图像的语义信息。

通过遥感图像数据集,可以更准确地理解和评估特定区域的特征和变化,为决策和规划提供有力支持。

本文将介绍一些开源数据集,为遥感影像处理识别提供数据支持,为构建更智慧、可持续的和谐社会做出积极贡献。

RarePlanes

RarePlanes 是 CosmiQ Works 和 AI.Reverie 公司联合开发的开源遥感数据集,包含真实和合成的卫星图像,是最大的可公开使用的超高分辨率数据集。

数据集的真实部分,包括 253 个 Maxar WorldView-3 卫星场景,这些场景总面积为 2142 平方公里,跨越 112 个位置,并带有 14700 架飞机的标注信息。

合成部分数据集是通过 AI.Reverie 的新型仿真平台生成的,包含 50000 个合成卫星图像以及约 630000 个飞机标注信息。

实际和合成的飞机标注信息均具有 10 种细粒度属性,包括:飞机长度,机翼跨度,机翼形状,机翼位置,机翼跨度,推进力,发动机数量,垂直稳定器数量,机翼的存在和飞机类别。

应用场景:目标检测。

  • 下载地址:https://www.cosmiqworks.org/RarePlanes/

VisDrone2019

VisDrone2019 数据集由天津大学机器学习和数据挖掘实验室 AISKYEYE 团队收集发布。该数据集包含了 288 个视频片段,共计 261908帧 和 10209 张静态图像,覆盖范围广泛,包括位置(来自中国 14 个不同城市,相距数千公里)、环境(城市和乡村)、物体(行人、车辆、自行车等)以及密度(稀疏和拥挤场景)。

根据任务所需,分为:

  • Object Detection in Images

  • Object Detection in Videos

  • Single-Object Tracking

  • Multi-Object Tracking

  • Crowd Counting

另外,该数据集是在不同的场景、不同的天气和光照条件下使用不同的无人机平台(即不同型号的无人机)收集的。这些帧(图像或视频画面)被手动标注了超过 260 万个边界框,用于标记经常关注的目标,比如行人、汽车、自行车和三轮车。

应用场景:目标跟踪。

  • 下载地址:https://github.com/VisDrone/VisDrone-Dataset

 

SAT-4 and SAT-6 airborne datasets

SAT-4 数据集包含 500000 幅图像,四种地表覆盖类别,分别是 barren land、trees、grassland 和 other 。其中 400000 幅图像用于训练(总数据集的五分之四),剩下的 100000 幅图像用于测试(总数据集的五分之一)。

SAT-6 数据集包含 405000 幅图像,六种地表覆盖类别,分别是 barren land、trees、grassland、 roads、buildings 和 water bodies。其中 324000 幅图像用于训练(总数据集的五分之四),81000 幅图像用于测试(总数据集的五分之一)。

应用场景:遥感影像分类。

  • 下载地址:https://csc.lsu.edu/~saikat/deepsat/

FAIR1M

FAIR1M 是中科院发布的用于遥感图像中精细目标检测和识别的大规模数据集。

该数据集具有以下特点:

  • 百万级实例规模

  • 旋转包围框标注

  • 细粒度目标识别

  • 类别覆盖广泛

  • 数据长尾分布

该数据集包含 37 个小类,5 个大类,共计 15000 张图像,覆盖全球 50 多个机场、港口、城乡等场景。数据集共计 37 类,包括 Boeing737、Boeing747、Boeing777、Boeing787、C919、A220、A321、A330、A350、ARJ21、other-airplane、Passenger Ship、Motorboat、Fishing Boat、Tugboat、Engineering Ship、Liquid Cargo Ship、Dry Cargo Ship、Warship、other-ship、Small Car、Bus、Cargo Truck、Dump Truck、Van、Trailer、Tractor、Excavator、Truck Tractor、other-vehicle、Basketball Court、Tennis Court、Football Field、Baseball Field、Intersection、Roundabout 和 Bridge。

应用场景:目标检测。

该数据集仅可用于学术研究。

  • 论文地址:https://www.sciencedirect.com/science/article/abs/pii/S0924271621003269

  • 下载地址:https://gaofen-challenge.com/benchmark

 

CORS-ADD

CORS-ADD 是基于 Google Map、WorldView-2、WorldView-3、Pleiades、Jilin-1、IKONOS 等卫星平台,通过人工标注构建的有关复杂遥感场景的的飞机目标检测数据集。该数据集共计 7337 张遥感影像,包含飞机实例共计 32285 个,可以充分支撑基于数据驱动算法的评估和训练。

应用场景:目标检测。

  • 论文地址:https://ieeexplore.ieee.org/document/10144379/

  • 下载地址:https://github.com/sgtojd/Complex-Optical-Remote-Sensing-Aircraft-Detection-Dataset

SYSU-CD

SYSU-CD 数据集包含 2007 年至 2014 年期间在香港拍摄的 20000 对尺寸为 256×256 的 0.5 米航空图像,主要变化类型包括:

  • newly built urban buildings

  • suburban dilation

  • groundwork before construction

  • change of vegetation

  • road expansion;sea construction

应用场景:变化检测。

  • 下载地址:https://github.com/liumency/SYSU-CD

 

RSICD

RSICD 数据集是由从 Google Earth、百度地图、MapABC 和 Tianditu 上收集的上万幅遥感图像所组成。这些图像的分辨率固定为 224X224 像素。遥感图像总数为 10921 幅,每幅图像有五句描述。

应用场景:图像字幕生成。

  • 下载地址:https://github.com/201528014227051/RSICD_optimal

 

RSD46-WHU

RSD46-WHU 是一个庞大的开放数据集,汇集了来自 Google Earth 和 Tianditu 的 117000 幅图像,涵盖了 46 个不同类别的内容,用于遥感图像场景分类。  whaosoft aiot http://143ai.com

该数据集可免费用于教育、研究和商业用途。

  • 下载地址:https://github.com/RSIA-LIESMARS-WHU/RSD46-WHU

 

--------------------------- 

GPU(图形处理器单元)在遥感影像处理中扮演着重要角色。由于遥感影像通常具有大量数据和复杂的信息,需要高效处理以进行识别和分析。GPU 并行计算能力强大,能够同时处理大规模数据,并加速分类识别、特征提取和图像处理等计算密集型任务。其并行计算特性使得 GPU 在遥感影像处理中可以更快速地完成大规模数据的分析和处理,提高了处理效率和算法的运行速度。

### Fair1M 数据集与 YOLO 目标检测模型 #### 关于 Fair1M 数据集 Fair1M 是一个大规模的遥感图像数据集,专门设计用于评估不同尺度下的目标检测性能。该数据集中包含了大量标注过的航空影像,涵盖了多种类别和复杂背景环境中的物体实例。 对于此类特定领域内的应用案例而言,采用像 YOLO 这样的高效实时对象识别框架是非常合适的选项之一[^3]。 #### 使用 YOLOv3 架构进行训练 YOLO (You Only Look Once) 家族的目标检测器因其快速的速度而闻名,在多个版本迭代过程中不断优化了准确性与效率之间的平衡。特别是 YOLOv3 版本引入了一些改进措施来增强特征提取能力以及多尺度预测机制,使其能够更好地适应各种尺寸的对象检测需求[^2]。 当考虑将 YOLO 应用到 Fair1M 上时,建议先调整预设参数以匹配数据集特点: - **输入分辨率**:考虑到遥感图片通常具有较高的空间分辨率,可能需要适当增加网络输入大小; - **锚点设置**:基于 Fair1M 中常见物体的比例分布重新计算一组更贴合实际场景的 anchor box 尺寸; - **分类数量**:根据具体任务定义好最终输出层所需的类别数目。 下面给出一段 Python 代码片段作为如何配置并启动训练过程的例子: ```python from yolov3 import YOLOv3Net, YOLOv3Loss import torch.optim as optim from dataset import create_dataloader # 初始化模型结构 model = YOLOv3Net(num_classes=...) # 设置损失函数 criterion = YOLOv3Loss() # 创建 DataLoader 实例加载 Fair1M 训练集 train_loader = create_dataloader('path/to/fair1m', batch_size=..., shuffle=True) optimizer = optim.Adam(model.parameters(), lr=0.001) for epoch in range(...): # 设定总的轮次 running_loss = 0.0 for i, data in enumerate(train_loader, 0): inputs, labels = data optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() print(f'Epoch {epoch + 1}, Loss: {running_loss / len(train_loader)}') ``` 此段脚本展示了基本的工作流程,但在真实项目里还需要进一步完善诸如学习率调度策略、验证环节等细节部分。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值