遥感影像~

遥感影像资源推荐:解锁开源数据集与强大GPU算力的无限可能

遥感影像处理识别是对利用遥感技术获取的图像数据进行识别和分析的过程。这种技术使用从航空器、卫星或其他遥感平台获取的图像数据,经过识别和分析后广泛应用在多种场景中,包括但不限于以下几个方面:

  1. 在农业活动中,可以使用遥感图像数据来监测农田中的作物生长和病害情况,以便及时采取措施;以及识别不同的作物类型或土地利用方式。

  2. 在机场场景中,可以用于监测和管理机场活动。通过识别和追踪飞机、地勤车辆、行李车、乘客等,有助于确保机场运行的顺利和安全。

  3. 在城市规划中,可以用来识别和监测建筑物、道路、交通标志等基础设施。

  4. 在环境监测中,可以对土地利用、森林覆盖、水体分布等进行分类分析,从而了解特定区域的自然环境状况;

  5. 在字幕生成过程中,通过分析和处理遥感影像,生成相应的文字描述,用于解释图像中的内容或者提供图像的语义信息。

通过遥感图像数据集,可以更准确地理解和评估特定区域的特征和变化,为决策和规划提供有力支持。

本文将介绍一些开源数据集,为遥感影像处理识别提供数据支持,为构建更智慧、可持续的和谐社会做出积极贡献。

RarePlanes

RarePlanes 是 CosmiQ Works 和 AI.Reverie 公司联合开发的开源遥感数据集,包含真实和合成的卫星图像,是最大的可公开使用的超高分辨率数据集。

数据集的真实部分,包括 253 个 Maxar WorldView-3 卫星场景,这些场景总面积为 2142 平方公里,跨越 112 个位置,并带有 14700 架飞机的标注信息。

合成部分数据集是通过 AI.Reverie 的新型仿真平台生成的,包含 50000 个合成卫星图像以及约 630000 个飞机标注信息。

实际和合成的飞机标注信息均具有 10 种细粒度属性,包括:飞机长度,机翼跨度,机翼形状,机翼位置,机翼跨度,推进力,发动机数量,垂直稳定器数量,机翼的存在和飞机类别。

应用场景:目标检测。

  • 下载地址:https://www.cosmiqworks.org/RarePlanes/

VisDrone2019

VisDrone2019 数据集由天津大学机器学习和数据挖掘实验室 AISKYEYE 团队收集发布。该数据集包含了 288 个视频片段,共计 261908帧 和 10209 张静态图像,覆盖范围广泛,包括位置(来自中国 14 个不同城市,相距数千公里)、环境(城市和乡村)、物体(行人、车辆、自行车等)以及密度(稀疏和拥挤场景)。

根据任务所需,分为:

  • Object Detection in Images

  • Object Detection in Videos

  • Single-Object Tracking

  • Multi-Object Tracking

  • Crowd Counting

另外,该数据集是在不同的场景、不同的天气和光照条件下使用不同的无人机平台(即不同型号的无人机)收集的。这些帧(图像或视频画面)被手动标注了超过 260 万个边界框,用于标记经常关注的目标,比如行人、汽车、自行车和三轮车。

应用场景:目标跟踪。

  • 下载地址:https://github.com/VisDrone/VisDrone-Dataset

 

SAT-4 and SAT-6 airborne datasets

SAT-4 数据集包含 500000 幅图像,四种地表覆盖类别,分别是 barren land、trees、grassland 和 other 。其中 400000 幅图像用于训练(总数据集的五分之四),剩下的 100000 幅图像用于测试(总数据集的五分之一)。

SAT-6 数据集包含 405000 幅图像,六种地表覆盖类别,分别是 barren land、trees、grassland、 roads、buildings 和 water bodies。其中 324000 幅图像用于训练(总数据集的五分之四),81000 幅图像用于测试(总数据集的五分之一)。

应用场景:遥感影像分类。

  • 下载地址:https://csc.lsu.edu/~saikat/deepsat/

FAIR1M

FAIR1M 是中科院发布的用于遥感图像中精细目标检测和识别的大规模数据集。

该数据集具有以下特点:

  • 百万级实例规模

  • 旋转包围框标注

  • 细粒度目标识别

  • 类别覆盖广泛

  • 数据长尾分布

该数据集包含 37 个小类,5 个大类,共计 15000 张图像,覆盖全球 50 多个机场、港口、城乡等场景。数据集共计 37 类,包括 Boeing737、Boeing747、Boeing777、Boeing787、C919、A220、A321、A330、A350、ARJ21、other-airplane、Passenger Ship、Motorboat、Fishing Boat、Tugboat、Engineering Ship、Liquid Cargo Ship、Dry Cargo Ship、Warship、other-ship、Small Car、Bus、Cargo Truck、Dump Truck、Van、Trailer、Tractor、Excavator、Truck Tractor、other-vehicle、Basketball Court、Tennis Court、Football Field、Baseball Field、Intersection、Roundabout 和 Bridge。

应用场景:目标检测。

该数据集仅可用于学术研究。

  • 论文地址:https://www.sciencedirect.com/science/article/abs/pii/S0924271621003269

  • 下载地址:https://gaofen-challenge.com/benchmark

 

CORS-ADD

CORS-ADD 是基于 Google Map、WorldView-2、WorldView-3、Pleiades、Jilin-1、IKONOS 等卫星平台,通过人工标注构建的有关复杂遥感场景的的飞机目标检测数据集。该数据集共计 7337 张遥感影像,包含飞机实例共计 32285 个,可以充分支撑基于数据驱动算法的评估和训练。

应用场景:目标检测。

  • 论文地址:https://ieeexplore.ieee.org/document/10144379/

  • 下载地址:https://github.com/sgtojd/Complex-Optical-Remote-Sensing-Aircraft-Detection-Dataset

SYSU-CD

SYSU-CD 数据集包含 2007 年至 2014 年期间在香港拍摄的 20000 对尺寸为 256×256 的 0.5 米航空图像,主要变化类型包括:

  • newly built urban buildings

  • suburban dilation

  • groundwork before construction

  • change of vegetation

  • road expansion;sea construction

应用场景:变化检测。

  • 下载地址:https://github.com/liumency/SYSU-CD

 

RSICD

RSICD 数据集是由从 Google Earth、百度地图、MapABC 和 Tianditu 上收集的上万幅遥感图像所组成。这些图像的分辨率固定为 224X224 像素。遥感图像总数为 10921 幅,每幅图像有五句描述。

应用场景:图像字幕生成。

  • 下载地址:https://github.com/201528014227051/RSICD_optimal

 

RSD46-WHU

RSD46-WHU 是一个庞大的开放数据集,汇集了来自 Google Earth 和 Tianditu 的 117000 幅图像,涵盖了 46 个不同类别的内容,用于遥感图像场景分类。  whaosoft aiot http://143ai.com

该数据集可免费用于教育、研究和商业用途。

  • 下载地址:https://github.com/RSIA-LIESMARS-WHU/RSD46-WHU

 

--------------------------- 

GPU(图形处理器单元)在遥感影像处理中扮演着重要角色。由于遥感影像通常具有大量数据和复杂的信息,需要高效处理以进行识别和分析。GPU 并行计算能力强大,能够同时处理大规模数据,并加速分类识别、特征提取和图像处理等计算密集型任务。其并行计算特性使得 GPU 在遥感影像处理中可以更快速地完成大规模数据的分析和处理,提高了处理效率和算法的运行速度。

DOTA (Detection in Aerial Images) 数据集是一个面向航空图像目标检测的数据集,其中包含高分辨率的航拍图像、目标类别标签和边界框标注。而 Fair1M 数据集是一个大规模的目标检测数据集,其中包含超过1,000,000个物体实例和7个常见目标类别,包括人、车、动物等。 从数据质量方面来看,DOTA 数据集具有高分辨率、多样性和真实性,而 Fair1M 数据集则具有大规模、多样性和真实性。 从任务难度方面来看,DOTA 数据集由于是面向航空图像的目标检测,因此需要考虑复杂的背景干扰和目标尺度变化等问题,具有一定的难度。而 Fair1M 数据集则是一个大规模数据集,因此可以用于评估模型的泛化能力和对不同场景下的目标识别能力。 从数据分布方面来看,DOTA 数据集中的样本符合实际场景中的分布,因此可以确保模型的鲁棒性和可靠性。而 Fair1M 数据集也具有真实场景的分布,但是由于数据量较大,可能存在一定的偏差。 从数据集规模方面来看,DOTA 数据集包含2806张高分辨率航拍图像和188,282个物体实例,而 Fair1M 数据集包含超过1,000,000个物体实例。 从可重复性方面来看,DOTA 数据集已经成为了目标检测领域的基准数据集之一,并且已经在不同的模型和算法之间进行了广泛的比较和竞争。而 Fair1M 数据集相对较新,还需要更多的实验和验证来证明其可重复性。 从数据集更新方面来看,DOTA 数据集已经在过去几年中不断更新和扩展,以适应不同的应用场景和需求。而 Fair1M 数据集也需要不断更新和扩展,以便于模型能够持续学习和适应变化的场景。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值