Python中使用SVM算法

(简单介绍一下支持向量机,详细介绍尤其是算法过程可以查阅其他资)

   在机器学习领域,支持向量机SVM(Support Vector Machine)是一个有监督的学习模型,通常用来进行模式识别、分类(异常值检测)以及回归分析。

   其具有以下特征:

   (1)SVM可以表示为凸优化问题,因此可以利用已知的有效算法发现目标函数的全局最小值。而其他分类方法都采用一种基于贪心学习的策略来搜索假设空间,这种方法一般只能获得局部最优解。

  (2) SVM通过最大化决策边界的边缘来实现控制模型的能力。尽管如此,用户必须提供其他参数,如使用核函数类型和引入松弛变量等。

  (3)SVM一般只能用在二类问题,对于多类问题效果不好。
  1. 下面是代码及详细解释(基于sklearn包):

from sklearn import svm
import numpy as np
import matplotlib.pyplot as plt

#准备训练样本
x=[[1,8],[3,20],[1,15],[3,35],[5,35],[4,40],[7,80],[6,49]]
y=[1,1,-1,-1,1,-1,-1,1]

##开始训练
clf=svm.SVC()  ##默认参数:kernel='rbf'
clf.fit(x,y)

#print("预测...")
#res=clf.predict([[2,2]])  ##两个方括号表面传入的参数是矩阵而不是list

##根据训练出的模型绘制样本点
for i in x:
    res=clf.predict(np.array(i).reshape(1, -1))
    if res > 0:
        plt.scatter(i[0],i[1],c='r',marker='*')
    else :
        plt.scatter(i[0],i[1],c='g',marker='*')

##生成随机实验数据(15行2列)
rdm_arr=np.random.randint(1, 15, size=(15,2))
##回执实验数据点
for i in rdm_arr:
    res=clf.predict(np.array(i).reshape(1, -1))
    if res > 0:
        plt.scatter(i[0],i[1],c='r',marker='.')
    else :
        plt.scatter(i[0],i[1],c='g',marker='.')
##显示绘图结果
plt.show()

     结果如下图:

     

       从图上可以看出,数据明显被蓝色分割线分成了两类。但是红色箭头标示的点例外,所以这也起到了检测异常值的作用。

      

      2.在上面的代码中提到了kernel='rbf',这个参数是SVM的核心:核函数

        重新整理后的代码如下:       


from sklearn import svm
import numpy as np
import matplotlib.pyplot as plt

##设置子图数量
fig, axes = plt.subplots(nrows=2, ncols=2,figsize=(7,7))
ax0, ax1, ax2, ax3 = axes.flatten()

#准备训练样本
x=[[1,8],[3,20],[1,15],[3,35],[5,35],[4,40],[7,80],[6,49]]
y=[1,1,-1,-1,1,-1,-1,1]
'''
    说明1:
       核函数(这里简单介绍了sklearn中svm的四个核函数,还有precomputed及自定义的)
        
    LinearSVC:主要用于线性可分的情形。参数少,速度快,对于一般数据,分类效果已经很理想
    RBF:主要用于线性不可分的情形。参数多,分类结果非常依赖于参数
    polynomial:多项式函数,degree 表示多项式的程度-----支持非线性分类
    Sigmoid:在生物学中常见的S型的函数,也称为S型生长曲线

    说明2:根据设置的参数不同,得出的分类结果及显示结果也会不同
    
'''
##设置子图的标题
titles = ['LinearSVC (linear kernel)',  
          'SVC with polynomial (degree 3) kernel',  
          'SVC with RBF kernel',      ##这个是默认的
          'SVC with Sigmoid kernel']
##生成随机试验数据(15行2列)
rdm_arr=np.random.randint(1, 15, size=(15,2))

def drawPoint(ax,clf,tn):
    ##绘制样本点
    for i in x:
        ax.set_title(titles[tn])
        res=clf.predict(np.array(i).reshape(1, -1))
        if res > 0:
           ax.scatter(i[0],i[1],c='r',marker='*')
        else :
           ax.scatter(i[0],i[1],c='g',marker='*')
     ##绘制实验点
    for i in rdm_arr:
        res=clf.predict(np.array(i).reshape(1, -1))
        if res > 0:
           ax.scatter(i[0],i[1],c='r',marker='.')
        else :
           ax.scatter(i[0],i[1],c='g',marker='.')

if __name__=="__main__":
    ##选择核函数
    for n in range(0,4):
        if n==0:
            clf = svm.SVC(kernel='linear').fit(x, y)
            drawPoint(ax0,clf,0)
        elif n==1:
            clf = svm.SVC(kernel='poly', degree=3).fit(x, y)
            drawPoint(ax1,clf,1)
        elif n==2:
            clf= svm.SVC(kernel='rbf').fit(x, y)
            drawPoint(ax2,clf,2)
        else :
            clf= svm.SVC(kernel='sigmoid').fit(x, y)
            drawPoint(ax3,clf,3)
    plt.show()

     结果如图:

 

    由于样本数据的关系,四个核函数得出的结果一致。在实际操作中,应该选择效果最好的核函数分析。

   3.在svm模块中还有一个较为简单的线性分类函数:LinearSVC(),其不支持kernel参数,因为设计思想就是线性分类。如果确定数据

可以进行线性划分,可以选择此函数。跟kernel='linear'用法对比如下:

  


from sklearn import svm
import numpy as np
import matplotlib.pyplot as plt

##设置子图数量
fig, axes = plt.subplots(nrows=1, ncols=2,figsize=(7,7))
ax0, ax1 = axes.flatten()

#准备训练样本
x=[[1,8],[3,20],[1,15],[3,35],[5,35],[4,40],[7,80],[6,49]]
y=[1,1,-1,-1,1,-1,-1,1]

##设置子图的标题
titles = ['SVC (linear kernel)',  
          'LinearSVC']

##生成随机试验数据(15行2列)
rdm_arr=np.random.randint(1, 15, size=(15,2))

##画图函数
def drawPoint(ax,clf,tn):
    ##绘制样本点
    for i in x:
        ax.set_title(titles[tn])
        res=clf.predict(np.array(i).reshape(1, -1))
        if res > 0:
           ax.scatter(i[0],i[1],c='r',marker='*')
        else :
           ax.scatter(i[0],i[1],c='g',marker='*')
    ##绘制实验点
    for i in rdm_arr:
        res=clf.predict(np.array(i).reshape(1, -1))
        if res > 0:
           ax.scatter(i[0],i[1],c='r',marker='.')
        else :
           ax.scatter(i[0],i[1],c='g',marker='.')

if __name__=="__main__":
    ##选择核函数
    for n in range(0,2):
        if n==0:
            clf = svm.SVC(kernel='linear').fit(x, y)
            drawPoint(ax0,clf,0)
        else :
            clf= svm.LinearSVC().fit(x, y)
            drawPoint(ax1,clf,1)
    plt.show()
 
 

 结果如图所示:

为了深入理解如何利用Python结合LibSVM库实现手写数字识别,推荐参考《Python+SVM实现手写数字识别实战与代码》。这篇实战指南将手把手带你完成从数据预处理到模型测试的全过程。 参考资源链接:[Python+SVM实现手写数字识别实战与代码](https://wenku.csdn.net/doc/6412b4cdbe7fbd1778d40e0c) 首先,你需要安装Python和必要的库,如mlpy,它内置了对LibSVM的支持。然后,你可以按照以下步骤进行手写数字识别: 1. 准备数据集:通常会使用MNIST数据集,它包含了数万张手写数字的图片和标签。使用Python的mlpy库可以方便地加载这些数据集。 2. 图像预处理:将手写数字图像归一化到相同的尺寸,例如28x28像素,并将其转换为灰度图像。接着,通过采样或降维技术将其缩减到适合SVM处理的大小,比如64维向量。 3. 特征提取:虽然已经通过灰度化和尺寸归一化提取了特征,但对于SVM来说,通常还需要进一步的特征处理。可以通过主成分分析(PCA)或线性判别分析(LDA)来降维,提取出最具代表性的特征。 4. 数据集划分:将预处理后的数据集划分为训练集和测试集。可以使用sklearn库的train_test_split函数来完成这个任务。 5. SVM模型训练:使用mlpy库svmlearn函数,设置SVM的类型和核函数,然后对训练集进行训练。例如: ```python from mlpy import svmlearn svm = svmlearn(x_train, y_train, 'c_svc', 'poly', gamma=0.01) ``` 6. 模型测试:使用训练好的SVM模型对测试集进行预测,评估模型性能。可以通过比较模型预测结果和真实标签来计算准确率。 ```python predictions = svm.predict(x_test) accuracy = (predictions == y_test).sum() / float(len(y_test)) ``` 7. 未知数据预测:对于新收集到的手写数字图像,重复上述的图像预处理和特征提取步骤,然后使用训练好的模型进行预测,得到识别结果。 通过本指南的学习,你可以了解到如何在Python应用SVM算法进行手写数字识别,并且通过LibSVM库实现模型的训练和测试。如果希望进一步提高机器学习模型的识别准确率,建议深入研究特征提取的高级技术以及不同的SVM参数优化方法。同时,为了全面掌握机器学习领域的知识,建议在完成这个项目后继续学习更多相关的高级内容。 参考资源链接:[Python+SVM实现手写数字识别实战与代码](https://wenku.csdn.net/doc/6412b4cdbe7fbd1778d40e0c)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值