(译)使用堆叠的RBM进行股价预测

          【论文链接】           Applying Deep Learning to Enhance Momentum Trading Strategies in Stocks

使用由堆叠的受限玻尔兹曼机器组成的自动编码器来从个体股票价格的历史中提取特征。 我们的模型能够发现股票动量效应的增强版本,而不需要对输入特征进行广泛的手工设计,并且在1990-2009测试期间的年回报率为45.93%,而基本动量为10.53

价格动量是经验发现(Jegadeesh&Titman,1993),相对于过去收益率较低的股票(输家)而言,过去3至12个月(赢家)高回报的股票在未来几个月继续表现良好。 随后的研究发现,这种动量效应在美国广为人知之后继续保持,并适用于国际股票以及其他资产类别,包括外汇,商品和债券(Asness等,2013)。 对于金融学者而言,购买赢家和卖出输家的简单策略显然可能会对市场迅速将可用信息纳入资产价格这一概念提出挑战。 事实上,Fama和French(2008)将势头描述为股票收益中的“首要异常”。

股票收益难以预测的原因:股价走势中的高度噪声。 此外,任何存在的模式都会随着投资者自己随着时间的推移而学习并竞争交易利润而发生变化。

特别地,我们使用由堆叠的受限玻尔兹曼机器(RBM)组成的自动编码器来从股票价格中提取特征,然后我们将其传递给前馈神经网络(FFNN)分类器。

结果表明the enhanced strategy buys stocks that have had poor recent returns and sells those with high recent returns, consistent with the short-term reversal effect。

文章的贡献在于表明了当输入被正确地预处理后,堆叠的自编码器可以从低信噪比的时间序列数据中提取有用的特征(stacked autoencoders constructed from RBMs can extract useful features even from low signal-to-noise time series data such as financial asset prices if the inputs are appropriately preprocessed. )尚未解决的问题是随着输入的增加,用于各种类别特征的自动编码器是否比在单个自动编码器中组合所有特征的性能更好(whether separate autoencoders for various categories of features would perform better than combining all features in a single autoencoder.)

       

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: SAE堆叠自编码器(Stacked Autoencoder, SAE)是一种深度学习网络模型,用于进行无监督学习或特征提取。MATLAB是一种流行的科学计算软件,提供了许多功能丰富的工具箱和函数,可以用于实现SAE。 要实现SAE的MATLAB源代码,首先需要引入相关的工具箱和函数。其中,MATLAB的深度学习工具箱是必需的,它包含了用于训练神经网络的功能。 以下是一个简单的SAE MATLAB实现源代码的示例: ```matlab % 导入数据集 load mnist.mat; % 假设mnist.mat包含训练数据集 inputSize = size(trainData, 1); % 设置自编码器的层数和每层的隐藏单元数量 hiddenLayerSizes = [100 50 20]; % 创建SAE网络 sae = saetrain(trainData, hiddenLayerSizes); % 保存训练好的模型 save('sae_model.mat', 'sae'); % 加载模型 load('sae_model.mat'); % 使用SAE进行特征提取 features = encode(sae, testData); % 可以使用得到的特征进行其他任务,如分类 % 实现自编码器训练函数 function sae = saetrain(inputData, hiddenLayerSizes) sae.numLayers = length(hiddenLayerSizes); sae.rbm = cell(1, sae.numLayers); for layer = 1:sae.numLayers if layer == 1 inputSize = size(inputData, 1); outputSize = hiddenLayerSizes(layer); input = inputData; else inputSize = hiddenLayerSizes(layer-1); outputSize = hiddenLayerSizes(layer); input = encode(sae, inputData, layer-1); end sae.rbm{layer} = trainRBM(input, inputSize, outputSize); end end % 实现RBM训练函数 function rbm = trainRBM(inputData, inputSize, hiddenSize) rbm = rbmsetup(inputSize, hiddenSize); rbm = rbmtrain(rbm, inputData); end % 实现RBM设置函数 function rbm = rbmsetup(visNum, hidNum) rbm.visNum = visNum; rbm.hidNum = hidNum; rbm.weights = 0.1 * randn(visNum, hidNum); rbm.vBias = zeros(visNum, 1); rbm.hBias = zeros(hidNum, 1); end % 实现RBM训练函数 function rbm = rbmtrain(rbm, data) rbm = rbmff(rbm, data); rbm = rbmbw(rbm); end % 实现RBM前向传播函数 function rbm = rbmff(rbm, data) rbm.visible = data; rbm.hiddenProb = sigmoid(rbm.visible * rbm.weights + repmat(rbm.hBias', size(data, 1), 1)); rbm.hiddenState = rbm.hiddenProb > rand(size(data, 1), rbm.hidNum); end % 实现RBM反向传播函数 function rbm = rbmbw(rbm) rbm.reconstructed = sigmoid(rbm.hiddenState * rbm.weights' + repmat(rbm.vBias', size(rbm.hiddenState, 1), 1)); end % 实现激活函数sigmoid function output = sigmoid(input) output = 1./(1 + exp(-input)); end ``` 该源代码演示了如何使用MATLAB实现SAE。首先,载入数据集,在本例中为mnist.mat。然后,定义自编码器的层数和每层的隐藏单元数量。接下来,采用自定义函数saeetrain来创建和训练SAE,该函数内部完成每个层级的RBM训练。最后,保存训练好的模型并加载模型以进行特征提取。 请注意,这只是一个简单的示例,实际上,要实现一个高效和有效的SAE可能需要更多的代码和调整。此外,还可以根据具体的数据集和需求进行一些参数调整和改进。 ### 回答2: SAE(Stacked Autoencoder,堆叠自编码器)是一种深度学习模型,可以用于无监督学习和特征提取。在MATLAB中,可以使用深度学习工具箱来实现SAE。 下面是一个简单的SAE MATLAB实现的示例源代码: ```matlab % 导入数据集 load('dataset.mat'); % 例如,dataset.mat包含训练数据X和相应的标签Y % 设置自编码器的参数 hiddenSize = 100; % 隐藏层的大小 autoenc1 = trainAutoencoder(X, hiddenSize); % 训练第一个自编码器 % 使用第一个自编码器的编码层作为第二个自编码器的输入 features = encode(autoenc1, X); % 获得第一个自编码器的编码层特征 autoenc2 = trainAutoencoder(features, hiddenSize); % 训练第二个自编码器 % 使用第二个自编码器的编码层作为整个SAE的输入 sae = stack(autoenc1, autoenc2); % 堆叠两个自编码器形成SAE % 微调整个SAE模型 sae = train(sae, X); % 使用训练数据进行微调 ``` 上述代码首先加载训练数据集,然后定义了一个隐藏层大小为100的自编码器。通过训练第一个自编码器,可以获取到其编码层的特征。接下来,利用第一个自编码器的编码层特征,训练第二个自编码器。最后,通过堆叠两个自编码器来形成完整的SAE模型,并使用训练数据进行微调。 此外,需要注意的是,在实际应用中,可能需要根据具体问题进行参数调整和模型优化,代码示例仅作为基本参考。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值