mykeylock
码龄13年
关注
提问 私信
  • 博客:103,476
    社区:1,337
    104,813
    总访问量
  • 46
    原创
  • 1,644,775
    排名
  • 33
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
  • 加入CSDN时间: 2012-02-14
博客简介:

mykeylock的博客

查看详细资料
个人成就
  • 获得67次点赞
  • 内容获得61次评论
  • 获得239次收藏
创作历程
  • 2篇
    2019年
  • 1篇
    2018年
  • 46篇
    2017年
成就勋章
创作活动更多

如何做好一份技术文档?

无论你是技术大神还是初涉此领域的新手,都欢迎分享你的宝贵经验、独到见解与创新方法,为技术传播之路点亮明灯!

174人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

线性代数本质理解

主要参考这个链接:https://www.bilibili.com/video/av6500834?from=search&seid=3249893627908257126对应的一系列学习视频主要收获:1、向量点积、线性变换和投影后两个向量长度相乘的本质联系。2、矩阵的秩代表线性变换后的维度。3、矩阵的行列式值等于矩阵变换后(维度不变)空间压缩的比例。其正负与xy轴的相对...
原创
发布博客 2019.11.10 ·
460 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

知识点杂文

IPV6的路由:利用在Ipv4的网络,通过隧道技术,利用Isatap实现隧道访问ipv6服务。
原创
发布博客 2018.02.10 ·
381 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Web安全机器学习

2015微软在Kaggle上的恶yi代码分类比赛:冠军队伍的三个黄金特征:1、恶yi代码图像把一个二进制文件以灰度图的形式展现出来,利用图像中的纹理特征对恶yi代码进行聚类。2、OPCode n-gramn-gram是计算某个语句出现的概率,用马尔科夫模型,结合条件概率计算得到,这里的语句是操作语句,如Push Mov等操作语句。————————————————————...
原创
发布博客 2019.11.10 ·
343 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

经验风险最小化与模型选择

经验风险最小化,是使得>与>之间的值尽量小,这样才能使得我们根据训练数据训练得到的模型有普适性。可以推导出来二者的差值存在一个上界,可以根据这个上界,得到>或者>,进一步可知存在偏差方差平衡。这个上界直观上理解,主要与模型的复杂度(如假设的个数、参数数量等)、训练样本数相关,而且可以直观得得到这个上界与模型复杂度成正相关,与样本数成负相关。这里关于模型复杂度的度量方法,可以用VC维的方式来表征,而
原创
发布博客 2017.12.10 ·
859 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

最大熵模型及其算法

最大熵模型表面意义上来讲是使信息熵或者条件熵最大,一般来讲最大熵模型是使条件熵最大的模型。最大熵模型的一些特点:1、最大熵模型的输入输出为X,Y,求解时需要代入p(x,y)的联合概率,即p(x,y)*log(y|x)求和的模型,这个模型里,我们需要求解的是p(y|x)的条件概率,但这里还有p(x,y)的概率,这里为了能够有效的计算模型,这里的p(x,y)用p'(x)*p(y|x)来
原创
发布博客 2017.12.02 ·
1788 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

RBM算法理解及推导

现在重新复习一下RBM算法,发现有一个新的发现。首先给出几个非常好的博客:(1)关于MCMC采样及Gibbs采样:http://blog.csdn.net/pipisorry/article/details/51373090(2)关于MCMC采样的形象解释及理解:https://www.zhihu.com/question/20743905/answer/155412666(3)关
原创
发布博客 2017.11.25 ·
3137 阅读 ·
1 点赞 ·
0 评论 ·
7 收藏

因子分析(Factor Analysis Model)算法推导

可以参考斯坦福大学Andrew Ng的学习视频:http://open.163.com/movie/2008/1/L/3/M6SGF6VB4_M6SGKK6L3.html关于算法总结可以参考:https://www.cnblogs.com/jerrylead/archive/2011/05/11/2043317.html以下图为自己完善的算法推导流程:待添加
原创
发布博客 2017.11.21 ·
5370 阅读 ·
3 点赞 ·
3 评论 ·
10 收藏

基于EM算法的文本聚类

文本聚类问题:一个文本为一个向量,向量的长度为字典的长度,这个向量中的每个值为0或1,表示这个单词是否在该文章中出现。假设为二分类,则每个向量对应一个分类值,分类值为0或1,如果为三分类,则分类值为0,1,2。而这个标签值为隐变量Z。这里的观测O为具体的各个向量。在这个模型里,参数是什么呢?我们需要由参数出发,经由隐变量,计算得到观测O,因此这里的参数设计可以类似于隐马尔可夫模型的
原创
发布博客 2017.11.20 ·
1429 阅读 ·
2 点赞 ·
2 评论 ·
1 收藏

矩阵微分基础知识

转自:http://www.cnblogs.com/xuxm2007/p/3332035.html矩阵微分http://www.iwenchao.com/mathematics/matrix-differential.htmlhttp://en.wikipedia.org/wiki/Matrix_calculushttp://www.atmos.washington.edu
转载
发布博客 2017.11.17 ·
2311 阅读 ·
1 点赞 ·
0 评论 ·
4 收藏

隐马尔可夫模型算法推导

上一篇博客是关于EM算法及混合高斯模型的推导,这里的隐马尔可夫模型也属于EM算法的范畴,都是使似然函数的期望最大来推导的。隐马尔可夫模型在推导过程中与混合高斯模型不同的地方在于:1、前者在推导时,观测序列O只有一个(一个序列包括多个序列值),而隐序列I则有许多个,因此在刚开始时,全局的P(O|λ)可以去掉;而混合高斯模型的观测则有很多个,每个观测只包括一个值(一维的单个值或者多维的向量
原创
发布博客 2017.11.17 ·
567 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

EM算法及混合高斯模型详细推导

EM模型是一个大的范畴,在模型包含隐变量的情况下,根据观测求模型参数,EM算法的典型应用有混合高斯模型及隐马尔可夫模型。想要真正理解EM算法,了解混合高斯模型及隐马尔可夫模型的算法推导是很有必要的。以下两个图,本人结合《统计学习方法》上的算法推导及自己的理解,总结了EM算法及混合高斯模型的推导过程。其中混合高斯模型处理的是一维数据,多维数据的在其基础上有些变化,随后整理。
原创
发布博客 2017.11.17 ·
1995 阅读 ·
0 点赞 ·
0 评论 ·
4 收藏

Kaggle项目:Kobe Bryant Shot Selection(科比投篮选择)

作为一个篮球迷,觉得这个题目非常有意思,竞赛的网址:https://www.kaggle.com/c/kobe-bryant-shot-selection
原创
发布博客 2017.11.11 ·
5314 阅读 ·
2 点赞 ·
0 评论 ·
11 收藏

常用的机器学习算法学习

1、GBDT(Gradient Boosting Decision Tree)2、FM(主要用于处理数据稀疏的情况),针对两两特征,增加一个系数W用于提取特征间的关系,而后用一个小矩阵V,乘以V转置来代替W矩阵。3、决策树与回归树:决策树是判断yes或no,每一步选择特征时用的是(熵增益)或者(Gini系数)的方法回归树则用于拟合,结果需要给出一个特定的数值,每一步选择特征时用
原创
发布博客 2017.11.08 ·
350 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

MAP与MLE的区别及朴素贝叶斯分类器

原文地址:http://www.cnblogs.com/liliu/archive/2010/11/24/1886110.html最大后验估计是根据经验数据获得对难以观察的量的点估计。与最大似然估计类似,但是最大的不同时,最大后验估计的融入了要估计量的先验分布在其中。故最大后验估计可以看做规则化的最大似然估计。    首先,我们回顾上篇文章中的最大似然估计,假设x为独立同分布的
转载
发布博客 2017.10.17 ·
1729 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

tensorflow中高级函数Experiment,Estimator,EstimatorSpec,DataSet

这几个对象分别封装了:Estimator:封装网络模型和参数EstimatorSpec:具体的模型DataSet:封装训练数据、评估数据、自动迭代器Experiment:封装了一个实验,参数包括Estimator估算器,输入数据等。关于这几个模型的一个介绍的博客:https://zhuanlan.zhihu.com/p/29073452github上一个代码例程:https
原创
发布博客 2017.10.15 ·
3484 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

数据平台Kaggle入门

以前不知道Kaggle这个平台的存在,偶然发现后,发现真是一个非常好的数据平台,它在大数据的地位相当于leetcode在在线编程上的地位。最开始的Kaggle从一个博客开始:http://blog.csdn.net/han_xiaoyang/article/details/49797143这篇文章从一个基本问题出发,讲解了算法从设计到比较完善的一个总流程,对新手来说帮助非常大。
原创
发布博客 2017.09.29 ·
411 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

监控器物检测object detection实战

实战目的:根据家里的监控器,实时检测出监控拍到的物体,包括人、车等。基本情况:1、家里安装有JOVISION监控器(中维),摄像头与存储设备通过路由器连接。2、JOVISION对应有一个客户端,名称为:云视通网络监控系统,可以在JOVISION官网下载。——————————————————————————————————————————思路:用一个训练好的小的Fas
原创
发布博客 2017.09.26 ·
1436 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

反向传播及softmax算法推导

自己重新整理了一下反向传播算法及softmax算法的推导。(1)针对通常的反向传播算法,Loss采用差值的绝对值平方和,非线性函数采用sigmoid函数(2)softmax算法推导是指,采用softmax对输出数据处理,并采用交叉熵作为Loss函数。两个算法的推导过程都是通过从单一元素出发,扩展到向量的形式。反向传播算法更详细的推导可参考博客:https://zhuanlan.
原创
发布博客 2017.09.22 ·
2844 阅读 ·
2 点赞 ·
1 评论 ·
3 收藏

强化学习A3C与UNREAL算法

A3C算法是Actor Critic算法的并行扩展。为了训练一对Actor Critic,将其复制多份,复制的每一对各自训练,之后将每一对进行综合,再然后将综合后的好的结果反馈给每一对复制出来的Actor Critic,一来一回能提高强化学习的学习效率。
原创
发布博客 2017.09.15 ·
2767 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

强化学习Q learning与policy gradient

开始学习强化学习:包括alphago等都是强化学习的典型。最典型的强化学习的算法为Q learning,这个算法的简介博客:https://www.zhihu.com/question/26408259目前只是明白了Q learning的算法,还有很多要学习的。
原创
发布博客 2017.09.07 ·
5411 阅读 ·
1 点赞 ·
0 评论 ·
12 收藏
加载更多