题目描述:
试设计一个算法,计算出从三角形的顶到底的一条路径,使该路径经过的数字总和最大。
数据输入:的第 1 行是数字三角形的行数,该数字在 1 到 100 之间。接下来 n 行是数字三角形各行中的数字。所有数字在 0 至 99之间。
结果输出:输出计算的最大值。
输入输出实例:
输入:
5
7
3 8
8 1 0
2 7 4 4
4 5 2 6 5
输出:
30
以上面的输入为例,第一行5表示数字三角形共有5行,后5行为数字三角形的内容
对三角形中的每一个数都有两条路径可以选择:正下方与右下方(如数字3可以选择3下方的8和右下方的1),从顶部开始,找到一条到达底部的路径,使路径上数字之和最大,输出最大值。
此例中,最大值为:7+3(↓)+8(↓)+7(↘)+5(↓)=30
算法分析
采用分治法自底向上递推即可。二维数组 tridata 存放输入的三角形序列,对该二维数组做递推,公式为:
if(tridata[row+1][col]>tridata[row+1][col+1])
tridata[row][col]+=tridata[row+1][col];
else
tridata[row][col]+=tridata[row+1][col+1];
递推结束后,tridata[0][0]即为所求最大值。
思考题
路径记录:输出结果的同时输出最大值的路径
分析:建立三维数组path跟随三角形中的每一个数使用数组记录其路径数据,并将路径数据与数据本身一起递推并储存,而后输出结果的同时输出路径数组即可。
参考程序
#include <iostream>
#include <iterator>
#include <stdio.h>
using namespace std;
int dp[20][20]; //复制原三角形数组,在不改动原三角形数组的情况下进行递推
int path[20][20][20]; //存放路径数据
int GetMax(int tri[20][20] ,int &triNum){
int row,col;
for(int i=0;i<20;i++){
for(int j=0;j<20;j++)
dp[i][j]=tri[i][j];
}
for(row=triNum-2;row>=0;row--){ //从倒数第二行开始计算结果
for (col=0; col<=row; col++) { //以行为基准,对该行从第一个数字计算动态规划结果
if (dp[row+1][col]>dp[row+1][col+1]) { //若:该数正下方数字大于右下方数字
dp[row][col]+=dp[row+1][col]; //则累加正下方数字
for(int l=0;l<=triNum-row;l++){
path[row][col][l]=path[row+1][col][l]; //将将要累加的点的附属路径放到新的点上
}
path[row][col][triNum-row-2]=tri[row+1][col]; //在上面的基础上加入新的路径选择
}
else {
dp[row][col]+=dp[row+1][col+1]; //反之累加右下方数字
for(int l=0;l<=triNum-row;l++){
path[row][col][l]=path[row+1][col+1][l];
}
path[row][col][triNum-row-2]=tri[row+1][col+1];
}
}
}
path[0][0][triNum-1]=tri[0][0];
return dp[0][0];
}
int main() {
int row;
cout<<"输入行数:";
cin>>row;
int tri[20][20];
cout<<"输入三角形数据:"<<endl;
for(int i=0;i<row;i++){
for(int j=0;j<=i;j++)
cin>>tri[i][j];
}
//计算结果
int res=GetMax(tri, row);
cout<<"最大路径和为:"<<res<<endl;
//输出路径
cout<<"路径为:";
for(int i=row-1;i>=0;i--){
cout<<path[0][0][i]<<' ';
}
}