蓝桥杯-- 历届试题 大臣的旅费(树的直径)

  历届试题 大臣的旅费  
时间限制:1.0s   内存限制:256.0MB
       
问题描述

很久以前,T王国空前繁荣。为了更好地管理国家,王国修建了大量的快速路,用于连接首都和王国内的各大城市。

为节省经费,T国的大臣们经过思考,制定了一套优秀的修建方案,使得任何一个大城市都能从首都直接或者通过其他大城市间接到达。同时,如果不重复经过大城市,从首都到达每个大城市的方案都是唯一的。

J是T国重要大臣,他巡查于各大城市之间,体察民情。所以,从一个城市马不停蹄地到另一个城市成了J最常做的事情。他有一个钱袋,用于存放往来城市间的路费。

聪明的J发现,如果不在某个城市停下来修整,在连续行进过程中,他所花的路费与他已走过的距离有关,在走第x千米到第x+1千米这一千米中(x是整数),他花费的路费是x+10这么多。也就是说走1千米花费11,走2千米要花费23。

J大臣想知道:他从某一个城市出发,中间不休息,到达另一个城市,所有可能花费的路费中最多是多少呢?

输入格式

输入的第一行包含一个整数n,表示包括首都在内的T王国的城市数

城市从1开始依次编号,1号城市为首都。

接下来n-1行,描述T国的高速路(T国的高速路一定是n-1条)

每行三个整数Pi, Qi, Di,表示城市Pi和城市Qi之间有一条高速路,长度为Di千米。

输出格式

输出一个整数,表示大臣J最多花费的路费是多少。

样例输入1
5
1 2 2
1 3 1
2 4 5
2 5 4
样例输出1
135
输出格式

大臣J从城市4到城市5要花费135的路费。


刚开始以为暴力可以过得,但是后台数据可能略微有点大,有一组还是超时了,像C(n,2)这样一对一对起点终点找方案,再加上dfs超时也是应该的吧,真是傻了,这不就是一个树的直径吗,两边dfs直接搞定,就是把树的直径处理了一下而已,根本就是裸题,答案就是一棵树中的最长路!!!!!

#include<stdio.h>
#include<iostream>
#include<queue>
#include<string.h>
#include<algorithm>
using namespace std;
#define MAXN 30000+10
#define MAXM 900000+10
#define INF 0x3f3f3f
int n,cnt,head[MAXN],vis[MAXN],dis[MAXN];
int ans,sx;
struct node
{
	int u,v;
	int val,next;
}edge[MAXM];
void add(int u,int v,int val)
{
	node E={u,v,val,head[u]};
	edge[cnt]=E;
	head[u]=cnt++;
}
void bfs(int x)
{
	queue<int>q;
	ans=0;
	memset(vis,0,sizeof(vis));
	memset(dis,0,sizeof(dis));
	q.push(x);
	vis[x]=1;
	while(!q.empty())
	{
		int u=q.front();
		q.pop();
		for(int i=head[u];i!=-1;i=edge[i].next)
		{
			node E=edge[i];
			if(!vis[E.v]&&dis[E.v]<dis[u]+E.val)
			{
				vis[E.v]=1;
				dis[E.v]=dis[u]+E.val;
				q.push(E.v);
				if(dis[E.v]>ans)
				{
					ans=dis[E.v];
					sx=E.v;
				}
			}
		}
	}
}
int main()
{
	int t;
	int k=1;
	while(cin>>n)
	{
		cnt=0;
		memset(head,-1,sizeof(head));
		int a,b,c;
		for(int i=1;i<n;i++)
		{
			scanf("%d%d%d",&a,&b,&c);
			add(a,b,c);
			add(b,a,c);
		}
		sx=1;
		bfs(1);
		bfs(sx);
		printf("%d\n",ans*10+(ans+1)*ans/2);
	}
	return 0;
}


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值