(第一次用博客写题解:])
Noip2015提高组Day1第一题 神奇的幻方
描述
幻方是一种很神奇的 N ∗ N 矩阵:它由数字 1,2,3, … … , N ∗ N 构成,且每行、每列及两条对角线上的数字之和都相同。
当 N 为奇数时,我们可以通过以下方法构建一个幻方: 首先将 1 写在第一行的中间。
之后,按如下方式从小到大依次填写每个数 K(K = 2,3, … , N ∗ N) :
- 若 (K − 1) 在第一行但不在最后一列,则将 K 填在最后一行, (K − 1) 所在列的右一列;
- 若 (K − 1) 在最后一列但不在第一行,则将 K 填在第一列,(K − 1) 所在行的上一行;
- 若 (K − 1) 在第一行最后一列,则将 K 填在 (K − 1) 的正下方;
- 若 (K − 1) 既不在第一行,也不在最后一列,如果 (K − 1) 的右上方还未填数, 则将 K 填在(K − 1)的右上方,否则将 K 填在 (K − 1) 的正下方。
现给定 N,请按上述方法构造 N ∗ N 的幻方。
格式
输入格式
一个整数 N,即幻方的大小。
输出格式
输出文件包含 N 行,每行 N 个整数,即按上述方法构造出的 N ∗ N 的幻方。相邻两个整数之间用单个空格隔开。
样例1
样例输入1
3
样例输出1
8 1 6 3 5 7 4 9 2
这是去年的世纪大水题,纯模拟就行。
我用了一个二维数组来储存数据,然后用一个大循环来控制,在循环里,i是每次填的数
while ( i < n * n )
进循环后,先填数再调整及判断,x和y可以理解为填的空的坐标
h [x] [y] = ++ i;
调整前,先设置了一个flag标记,记录当前状态,调整时,判断目前坐标的位置并把特殊的位置也纳入在内
if ( x == 1 && y != n ) { flag = 1; x = n , y ++; }
if ( y == n && x != 1 && flag == 0 ) { flag = 2; y = 1 , x --; }
if ( x == 1 && y == n && flag == 0 ) { flag = 3; y = 1 ; x = n;}
if ( flag == 0 ){ x -- , y ++; }
后面三个if里有判断当前flag的状态是避免调整了以后碰巧符合另一个位置,flag的可能值有0,1,2,3分别代表调整前坐标处在的状态
if ( h [x] [y] )
{
switch ( flag )
{
case 0 : x += 2 , y --; break;
case 1 : x = 1; break;
case 2 : x ++; break;
case 3 : x = 2 , y = n; break;
}
}
这个判断是避免调整之后坐标指向的点已经被填了,于是应题目要求做出另外调整
for ( int j = 1 ; j <= n ; j ++ )
{
for ( int k = 1 ; k <= n ; k ++ )
printf ( "%d " , h [j] [k] );
putchar ( '\n' );
}
最后输出就好了。
下面附上全部代码和运行效果:
#include <cstdio>
int h [40] [40] , n , x , y , i , flag;
int main()
{
scanf ( "%d" , &n );
x = 1 , y = n / 2 + 1 , i = 0;
while ( i < n * n )
{
flag = 0;
h [x] [y] = ++ i;
if ( x == 1 && y != n ) { flag = 1; x = n , y ++; }
if ( y == n && x != 1 && flag == 0 ) { flag = 2; y = 1 , x --; }
if ( x == 1 && y == n && flag == 0 ) { flag = 3; y = 1 ; x = n;}
if ( flag == 0 ){ x -- , y ++; }
if ( h [x] [y] )
{
switch ( flag )
{
case 0 : x += 2 , y --; break;
case 1 : x = 1; break;
case 2 : x ++; break;
case 3 : x = 2 , y = n; break;
}
}
}
for ( int j = 1 ; j <= n ; j ++ )
{
for ( int k = 1 ; k <= n ; k ++ )
printf ( "%d " , h [j] [k] );
putchar ( '\n' );
}
return 0;
}