小文件来源有哪些?
常见的小文件来源于有:数据源本事就包含大量的小文件;动态分区插入的数据;reduce个数越多产生的小文件就越多。
大量小文件会有哪些影响?
小文件会开很多map,一个map开一个JVM去执行,所以这些任务的初始化,启动,执行会浪费大量的资源,严重影响性能。
在Hdfs中,每个小文件对象约占150byte,如果小文件多会占用大量内存。
如何解决?
少用动态分区,使用时记得按distribute by分区;减少reduce的数量;从数据源头解决;
案例1:按天将原始数据层进行动态分区。
set hive.exec.dynamic.partition=true;
set hive.exec.dynamic.partition.mode=nonstrict;
set hive.vectorized.execution.enabled=true;
insert overwrite table dwd_level_info partition(dt)
select
mid_id,
area_code,
vc,
game_name,
get_json_object(event_json,'$.group'),
get_json_object(event_json,'$.action'),
get_json_object(event_json,'$.gameKind'),
get_json_object(event_json,'$.level'),
get_json_object(event_json,'$.maxLevel'),
get_json_object(event_json,'$.state'),
ts,
dt
from dwd_events_log
where
dt>='2021-06-01' and dt<='2021-06-30'
and game_name='iOS_BricksGame'
and event_name='stage'
distribute by dt;
案例2:已经存在的小文件之表重建
重建表,建表时减少reduce的数量;通过参数调节,设置map/reduce的数量;
--设置map输入合并小文件的相关参数:
set hive.input.format=org.apache.hadoop.hive.ql.io.CombineHiveInputFormat;
--每个Map最大输入大小(这个值决定了合并后文件的数量)
set mapred.max.split.size=256000000;
--一个节点上split的至少的大小(这个值决定了多个DataNode上的文件是否需要合并)
set mapred.min.split.size.per.node=100000000;
--交换机下
set mapred.min.split.size.per.rack=100000000;
--设置map端输出进行合并,默认为true
set hive.merge.mapfiles = true;
--设置reduce端输出进行合并,默认为false
set hive.merge.mapredfiles = true;
--设置合并文件的大小
set hive.merge.size.per.task = 25610001000;
--当输出文件的平均大小小于该值时,启动一个独立的MapReduce任务进行文件merge
set hive.merge.smallfiles.avgsize=16000000;
案例3:已经存在的小文件之小文件归档
如图每天收集生成大量小文件
归档命令
[wxq@hadoop101 ~]$ hadoop archive
archive <-archiveName <NAME>.har> <-p <parent path>> [-r <replication factor>] <src>* <dest>
-- 执行命令式相当于跑了一个MR
hadoop archive -archiveName output.har -p /origin_data/games/log/topic_app_start/2021-10-20 /origin_data/games/log/topic_app_start/2021-10-20/output
-- MR部分信息
2021-10-26 16:12:47,599 INFO impl.YarnClientImpl: Submitted application application_1635212862469_0001
2021-10-26 16:12:47,842 INFO mapreduce.Job: The url to track the job: http://hadoop103:8088/proxy/application_1635212862469_0001/
2021-10-26 16:12:47,844 INFO mapreduce.Job: Running job: job_1635212862469_0001
2021-10-26 16:13:03,358 INFO mapreduce.Job: Job job_1635212862469_0001 running in uber mode : false
2021-10-26 16:13:03,359 INFO mapreduce.Job: map 0% reduce 0%
2021-10-26 16:13:25,781 INFO mapreduce.Job: map 100% reduce 0%
2021-10-26 16:13:38,140 INFO mapreduce.Job: map 100% reduce 100%
2021-10-26 16:13:39,192 INFO mapreduce.Job: Job job_1635212862469_0001 completed successfully
2021-10-26 16:13:39,329 INFO mapreduce.Job: Counters: 53
归档后数据:几百个文件归档到一个大文件。
总结:HDFS不太适合存储小文件!
①源头上解决,在上传大量小文件时! 将大量小文件打包为一个文件!
②如果小文件已经上传到了HDFS,可以使用HDFS提供的归档工具Har类似tar工具!