洛谷P1378 油滴扩展

在一个长方形框子里,最多有 NN 个相异的点,在其中任何一个点上放一个很小的油滴,那么这个油滴会一直扩展,直到接触到其他油滴或者框子的边界。必须等一个油滴扩展完毕才能放置下一个油滴。那么应该按照怎样的顺序在这 NN 个点上放置油滴,才能使放置完毕后所有油滴占据的总面积最大呢?(不同的油滴不会相互融合)

注:圆的面积公式 S=πr2S=πr2,其中 rr 为圆的半径。

输入格式

第一行,一个整数 NN。

第二行,四个整数 x,y,x′,y′x,y,x′,y′,表示长方形边框一个顶点及其对角顶点的坐标。

接下来 NN 行,第 ii 行两个整数 xi,yixi​,yi​,表示盒子内第 ii 个点的坐标。

输出格式

一行,一个整数,长方形盒子剩余的最小空间(结果四舍五入输出)。

又是朴实无华的模拟暴搜

除了PAI得取得精确点没什么注意的

#include<bits/stdc++.h>
using namespace std;
vector<pair<int,int>> point;
vector<double> r;
int x,y,n;
void paint(int k){
    int x1,y1;
    int x0 = point[k].first;
    int y0 = point[k].second;
    double minr = min(min(x0,x - x0),min(y0,y-y0));
    for(int i = 0; i<n;i++){
        if(i == k)
            continue;
        x1 = point[i].first;
        y1 = point[i].second;
        double dis = sqrt((x0 - x1) * (x0-x1) + (y0-y1)*(y0-y1));
        if(dis < minr + r[i] && r[i]!=0){
            minr = min(dis-r[i],minr);
            if(minr < 0)
            minr = 0;
        }
    }
    r[k] = minr;
}
vector<bool>used;
double ans = 0;
void dfs(int time,double sum){
    if(time == n){
        ans = max(sum,ans);
        return;
    }
    for(int i = 0;i < n;i++){
        if(!used[i]){
            paint(i);
            used[i] = true;
            dfs(time+1,sum+3.1415926*r[i]*r[i]);
            r[i] = 0;
            used[i] = false;
        }
        dfs(time+1,sum);
    }
}
int main(){
    int x1,y1;
    cin >> n;
    cin >> x >> y >> x1 >> y1;
        int a = min(x,x1);int b = min(y,y1);
    x = abs(x - x1);
    y = abs(y - y1);
    r.resize(n,0);
    used.resize(n,false);
    for(int i = 0;i < n;i++){
        cin >> x1 >> y1;
        x1-=a;y1-=b;
        point.push_back(make_pair(x1,y1));
    }
   dfs(0,0);
   cout << (int)round((x * y) - ans);
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值