在一个长方形框子里,最多有 NN 个相异的点,在其中任何一个点上放一个很小的油滴,那么这个油滴会一直扩展,直到接触到其他油滴或者框子的边界。必须等一个油滴扩展完毕才能放置下一个油滴。那么应该按照怎样的顺序在这 NN 个点上放置油滴,才能使放置完毕后所有油滴占据的总面积最大呢?(不同的油滴不会相互融合)
注:圆的面积公式 S=πr2S=πr2,其中 rr 为圆的半径。
输入格式
第一行,一个整数 NN。
第二行,四个整数 x,y,x′,y′x,y,x′,y′,表示长方形边框一个顶点及其对角顶点的坐标。
接下来 NN 行,第 ii 行两个整数 xi,yixi,yi,表示盒子内第 ii 个点的坐标。
输出格式
一行,一个整数,长方形盒子剩余的最小空间(结果四舍五入输出)。
又是朴实无华的模拟暴搜
除了PAI得取得精确点没什么注意的
#include<bits/stdc++.h>
using namespace std;
vector<pair<int,int>> point;
vector<double> r;
int x,y,n;
void paint(int k){
int x1,y1;
int x0 = point[k].first;
int y0 = point[k].second;
double minr = min(min(x0,x - x0),min(y0,y-y0));
for(int i = 0; i<n;i++){
if(i == k)
continue;
x1 = point[i].first;
y1 = point[i].second;
double dis = sqrt((x0 - x1) * (x0-x1) + (y0-y1)*(y0-y1));
if(dis < minr + r[i] && r[i]!=0){
minr = min(dis-r[i],minr);
if(minr < 0)
minr = 0;
}
}
r[k] = minr;
}
vector<bool>used;
double ans = 0;
void dfs(int time,double sum){
if(time == n){
ans = max(sum,ans);
return;
}
for(int i = 0;i < n;i++){
if(!used[i]){
paint(i);
used[i] = true;
dfs(time+1,sum+3.1415926*r[i]*r[i]);
r[i] = 0;
used[i] = false;
}
dfs(time+1,sum);
}
}
int main(){
int x1,y1;
cin >> n;
cin >> x >> y >> x1 >> y1;
int a = min(x,x1);int b = min(y,y1);
x = abs(x - x1);
y = abs(y - y1);
r.resize(n,0);
used.resize(n,false);
for(int i = 0;i < n;i++){
cin >> x1 >> y1;
x1-=a;y1-=b;
point.push_back(make_pair(x1,y1));
}
dfs(0,0);
cout << (int)round((x * y) - ans);
}