机器学习之SVM

本文详细介绍了支持向量机(SVM),从线性可分的支持向量机开始,阐述了其间隔最大化和决策函数,接着深入推导了SVM的过程,包括函数间隔、几何间隔和拉格朗日乘子法的应用。在面对线性不可分数据时,文章讨论了引入松弛因子的概念,解析了带松弛因子的SVM拉格朗日函数,并总结了计算方法。最后,对SVM的损失函数进行了分析。
摘要由CSDN通过智能技术生成

一、线性可分支持向量机

二维平面线性可分样例图:
在这里插入图片描述
分割超平面理解:
在这里插入图片描述
线性可分支持向量机:
给定线性可分训练数据集,通过间隔最大化得到的分离超平面为:
在这里插入图片描述
相应的分类决策函数:
在这里插入图片描述
该决策函数称为线性可分支持向量机;
符号定义:
在这里插入图片描述
目标函数定义:
在这里插入图片描述
继而可得出

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值